Hardware White Paper

Designing Hardware for Microsoft® Operating Systems

Microsoft Extensible Firmware Initiative
FAT32 File System Specification

FAT: General Overview of On-Disk Format

Version 1.03, December 6, 2000
Microsoft Corporation

The FAT (File Allocation Table) file system has its origins in the late 1970s and
early1980s and was the file system supported by the Microsoft® MS-DOS®
operating system. It was originally developed as a simple file system suitable for
floppy disk drives less than 500K in size. Over time it has been enhanced to support
larger and larger media. Currently there are three FAT file system types: FAT12,
FAT16 and FAT32. The basic difference in these FAT sub types, and the reason for
the names, is the size, in bits, of the entries in the actual FAT structure on the disk.
There are 12 bits in a FAT12 FAT entry, 16 bits in a FAT16 FAT entry and 32 bits in
a FAT32 FAT entry.

Contents

Notational Conventions in this DOCUMENTccociieiirieincerere e 7
General Comments (Applicable to FAT File System All TYPES) .ccvovvcereriereecere e 7
BOOt SECLOr @nNd BPB.......ooicei e et a e s ae et e 7
FAT DaAtA SIFUCTUIE ...t en e s s nn e neenenrenneene s 14
FAT TYPe DELerMIiNALI ON ..c.ooviiiiiiiiieiite ettt et sn e en e 15
FAT VolUME INITIAliZAETON ..t 20
FAT32 FSInfo Sector Structure and Backup BOOt SECLOccceeeeeerienieiereeeseneseese e 23
N I T =0t (0] VS 1 (] = P 24
FAT LONQG DITECIOMY ENTIIES ...eiicieieii et riesies ettt e e e s eseste st e saensenaeneenennens 29
Name Limits and CharaCter SELS........ciiiiiiieereeere e e 33
Name Matching In Short & LONG NAMESccoccviiiieiriieiere e se e sse e s 34
Naming Conventions and LoNg NAMESccccciieiererisese st sneenens 35
Effect of Long Directory Entries on Down Level Versions of FATc.ccccovvivivvcciinneenene 36
Validating The Contents Of @ DIir€CLOIYccoceieiciii et 37
Other Notes Relating to FAT DIirECLOTIES ..ovuiiiieeee et 38

Microsoft, MS_DOS, Windows, and Windows NT are trademarks or registered trademarks of Microsoft Corporation in the United
States and/or other countries. Other product and company names mentioned herein may be the trademarks of their respective
owners.

© 2000 Microsoft Corporation. All rights reserved.

FAT: General Overview of On- Disk Format—Page 2

Microsoft Extensible Firmware Initiative FAT32 File System Specification

IMPORTANT- READ CAREFULLY: This Microsoft Agreement (“Agreement”) is a legal
agreement between you (either an individual or a single entity) and Microsoft Corporation
(“Microsoft”) for the version of the Microsoft specification identified above which you are
about to download (“Specification”). BY DOWNLOADING, COPYING OR OTHERWISE USING
THE SPECIFICATION, YOU AGREETO BEBOUND BY THE TERMS OF THIS AGREEMENT. IF
YOU DO NOT AGREETO THE TERMS OF THIS AGREEMENT, DO NOT DOWNLOAD, COPY, OR
USE THE SPECIFICATION.

The Specification is owned by Microsoft or its suppliers and is protected by copyright laws
and international copyright treaties, as well as other intellectual property laws and
treaties.

1. LIMITED LICENSEAND COVENANT NOT TO SUE.

€) Provided that you comply with all terms and conditions of this Agreement and
subject to the limitations in Sections 1(c) - (f) below, Microsoft grants to you the following
non- exclusive, worldwide, royalty- free, non- transferable, non- sublicenseable license
under any copyrights owned or licensable by Microsoft without payment of consideration
to unaffiliated third parties, to reproduce the Specification solely for the purposes of
creating portions of products which comply with the Specification in unmodified form.

(b) Provided that you comply with all terms and conditions of this Agreement and
subject to the limitations in Sections 1(c) - (f) below, Microsoft grants to you the following
non- exclusive, worldwide, royalty- free, non- transferable, non- sublicenseable, reciprocal
limited covenant not to sue under its Necessary Claims solely to make, have made, use,
import, and directly and indirectly, offer to sell, sell and otherwise distribute and dispose
of portions of products which comply with the Specification in unmodified form.

For purposes of sections (a) and (b) above, the Specification is “unmodified” if there are no
changes, additions or extensions to the Specification, and “Necessary Claims” means
claims of a patent or patent application which are (1) owned or licenseable by Microsoft
without payment of consideration to an unaffiliated third party; and (2) have an effective
filing date on or before December 31, 2010, that must be infringed in order to make a
portion(s) of a product that complies with the Specification. Necessary Claims does not
include claims relating to semiconductor manufacturing technology or microprocessor
circuits or claims not required to be infringed in complying with the Specification (even if
in the same patent as Necessary Claims).

(c) The foregoing covenant not to sue shall not extend to any part or function of a
product which (i) is not required to comply with the Specification in unmodified form, or
(if) to which there was a commercially reasonable alternative to infringing a Necessary
Claim.

(d) Each of the license and the covenant not to sue described above shall be
unavailable to you and shall terminate immediately if you or any of your Affiliates
(collectively “Covenantee Party”) “Initiates” any action for patent infringement against: (X)
Microsoft or any of its Affiliates (collectively “Granting Party”), (y) any customers or
distributors of the Granting Party, or other recipients of a covenant not to sue with respect
to the Specification from the Granting Party (“Covenantees”); or (z) any customers or
distributors of Covenantees (all parties identified in (y) and (z) collectively referred to as
“Customers”), which action is based on a conformant implementation of the Specification.
As used herein, “Affiliate” means any entity which directly or indirectly controls, is
controlled by, or is under common control with a party; and control shall mean the power,
whether direct or indirect, to direct or cause the direction of the management or policies
of any entity whether through the ownership of voting securities, by contract or otherwise.

© 2000 Microsoft Corporation. All rights reserved. 2

FAT: General Overview of On- Disk Format—Page 3

“Initiates” means that a Covenantee Party is the first (as between the Granting Party and
the Covenantee Party) to file or institute any legal or administrative claim or action for
patent infringement against the Granting Party or any of the Customers. “Initiates”
includes any situation in which a Covenantee Party files or initiates a legal or
administrative claim or action for patent infringement solely as a counterclaim or
equivalent in response to a Granting Party first filing or instituting a legal or
administrative patent infringement claim against such Covenantee Party.

(e) Each of the license and the covenant not to sue described above shall not extend
to your use of any portion of the Specification for any purpose other than (a) to create
portions of an operating system (i) only as necessary to adapt such operating system so
that it can directly interact with a firmware implementation of the Extensible Firmware
Initiative Specification v. 1.0 (“EFI Specification”); (ii) only as necessary to emulate an
implementation of the EFI Specification; and (b) to create firmware, applications, utilities
and/or drivers that will be used and/or licensed for only the following purposes: (i) to
install, repair and maintain hardware, firmware and portions of operating system software
which are utilized in the boot process; (ii) to provide to an operating system runtime
services that are specified in the EFI Specification; (iii) to diagnose and correct failures in
the hardware, firmware or operating system software; (iv) to query for identification of a
computer system (whether by serial numbers, asset tags, user or otherwise); (v) to
perform inventory of a computer system; and (vi) to manufacture, install and setup any
hardware, firmware or operating system software.

4)) Microsoft reserves all other rights it may have in the Specification and any
intellectual property therein. The furnishing of this document does not give you any
license or covenant not to sue with respect to any other Microsoft patents, trademarks,
copyrights or other intellectual property rights.

2. ADDITIONAL LIMITATIONS AND OBLIGATIONS.

(a)The foregoing license and covenant not to sue is applicable only to the version of the
Specification which you are about to download. It does not apply to any additional
versions of or extensions to the Specification.

(b)Without prejudice to any other rights, Microsoft may terminate this Agreement if you
fail to comply with the terms and conditions of this Agreement. In such event you must
destroy all copies of the Specification.

3. INTELLECTUAL PROPERTY RIGHTS. All ownership, title and intellectual property
rights in and to the Specification are owned by Microsoft or its suppliers.

4. U.S. GOVERNMENT RIGHTS. Any Specification provided to the U.S. Government
pursuant to solicitations issued on or after December 1, 1995 is provided with the
commercial rights and restrictions described elsewhere herein. Any Specification provided
to the U.S. Government pursuant to solicitations issued prior to December 1, 1995 is
provided with RESTRICTED RIGHTS as provided for in FAR, 48 CFR52.227- 14 (JUNE 1987)
or DFAR, 48 CFR 252.227- 7013 (OCT 1988), as applicable.

5. EXPORT RESTRICTIONS. Export of the Specification, any part thereof, or any
process or service that is the direct product of the Specification (the foregoing collectively
referred to as the “Restricted Components”) from the United States is regulated by the
Export Administration Regulations (EAR, 15 CFR 730- 744) of the U.S. Commerce
Department, Bureau of Export Administration (“BXA”). You agree to comply with the EAR
in the export or re- export of the Restricted Components (i) to any country to which the
U.S. has embargoed or restricted the export of goods or services, which currently include,
but are not necessarily limited to Cuba, Iran, Iraq, Libya, North Korea, Sudan, Syria and the
Federal Republic of Yugoslavia (including Serbia, but not Montenegro), or to any national

© 2000 Microsoft Corporation. All rights reserved. 3

FAT: General Overview of On- Disk Format—Page 4

of any such country, wherever located, who intends to transmit or transport the Restricted
Components back to such country; (ii) to any person or entity who you know or have
reason to know will utilize the Restricted Components in the design, development or
production of nuclear, chemical or biological weapons; or (iii) to any person or entity who
has been prohibited from participating in U.S. export transactions by any federal agency
of the U.S. government. You warrant and represent that neither the BXA nor any other
U.S. federal agency has suspended, revoked or denied your export privileges. For
additional information see http://www.microsoft.com/exporting.

6. DISCLAIMER OF WARRANTIES. To the maximum extent permitted by applicable
law, Microsoft and its suppliers provide the Specification (and all intellectual property
therein) and any (if any) support services related to the Specification (“Support Services”)
AS IS AND WITH ALL FAULTS, and hereby disclaim all warranties and conditions, either
express, implied or statutory, including, but not limited to, any (if any) implied warranties
or conditions of merchantability, of fitness for a particular purpose, of lack of viruses, of
accuracy or completeness of responses, of results, and of lack of negligence or lack of
workmanlike effort, all with regard to the Specification, any intellectual property therein
and the provision of or failure to provide Support Services. ALSO, THEREIS NO
WARRANTY OR CONDITION OF TITLE, QUIET ENJOYMENT, QUIET POSSESSION,
CORRESPONDENCE TO DESCRIPTION OR NON- INFRINGEMENT, WITH REGARD TO THE
SPECIFICATION AND ANY INTELLECTUAL PROPERTY THEREIN. THE ENTIRERISK AS TO THE
QUALITY OF OR ARISING OUT OF USE OR PERFORMANCE OF THE SPECIFICATION, ANY
INTELLECTUAL PROPERTY THEREIN, AND SUPPORT SERVICES, IF ANY, REMAINS WITH YOU.

7. EXCLUSION OF INCIDENTAL, CONSEQUENTIAL AND CERTAIN OTHER DAMAGES. To
the maximum extent permitted by applicable law, in no event shall Microsoft or its
suppliers be liable for any special, incidental, indirect, or consequential damages
whatsoever (including, but not limited to, damages for loss of profits or confidential or
other information, for business interruption, for personal injury, for loss of privacy, for
failure to meet any duty including of good faith or of reasonable care, for negligence, and
for any other pecuniary or other loss whatsoever) arising out of or in any way related to
the use of or inability to use the SPECIFICATION, ANY INTELLECTUAL PROPERTY THEREIN,
the provision of or failure to provide Support Services, or otherwise under or in connection
with any provision of this AGREEMENT, even in the event of the fault, tort (including
negligence), strict liability, breach of contract or breach of warranty of Microsoft or any
supplier, and even if Microsoft or any supplier has been advised of the possibility of such
damages.

8. LIMITATION OF LIABILITY AND REMEDIES. Notwithstanding any damages that you
might incur for any reason whatsoever (including, without limitation, all damages
referenced above and all direct or general damages), the entire liability of Microsoft and
any of its suppliers under any provision of this Agreement and your exclusive remedy for
all of the foregoing shall be limited to the greater of the amount actually paid by you for
the Specification or U.S.$5.00. The foregoing limitations, exclusions and disclaimers shall
apply to the maximum extent permitted by applicable law, even if any remedy fails its
essential purpose.

9. APPLICABLE LAW. If you acquired this Specification in the United States, this
Agreement is governed by the laws of the State of Washington. If you acquired this
Specification in Canada, unless expressly prohibited by local law, this Agreement is
governed by the laws in force in the Province of Ontario, Canada; and, in respect of any
dispute which may arise hereunder, you consent to the jurisdiction of the federal and
provincial courts sitting in Toronto, Ontario. If this Specification was acquired outside the
United States, then local law may apply.

© 2000 Microsoft Corporation. All rights reserved. 4

FAT: General Overview of On- Disk Format—Page 5

10.QUESTIONS. Should you have any questions concerning this Agreement, or if you
desire to contact Microsoft for any reason, please contact the Microsoft subsidiary serving
your country, or write: Microsoft Sales Information Center/One Microsoft Way/Redmond,
WA 98052- 6399.

11.ENTIRE AGREEMENT. This Agreement is the entire agreement between you and
Microsoft relating to the Specification and the Support Services (if any) and they supersede
all prior or contemporaneous oral or written communications, proposals and
representations with respect to the Specification or any other subject matter covered by
this Agreement. To the extent the terms of any Microsoft policies or programs for
Support Services conflict with the terms of this Agreement, the terms of this Agreement
shall control.

Sivous avez acquis votre produit Microsoft au CANADA, la garantie limitée suivante vous
concerne :

RENONCIATION AUX GARANTIES. Dans toute la mesure permise par la législation en
vigueur, Microsoft et ses fournisseurs fournissent la Specification (et a toute propriété
intellectuelle dans celle-ci) et tous (selon le cas) les services d’assistance liés a la
Specification (“Services d’assistance”) TELS QUELSET AVEC TOUS LEURS DEFAUTS, et par
les présentes excluent toute garantie ou condition, expresse ou implicite, l1égale ou
conventionnelle, écrite ou verbale, y compris, mais sans limitation, toute (selon le cas)
garantie ou condition implicite ou Iégale de qualité marchande, de conformité a un usage
particulier, d’absence de virus, d’exactitude et d’'intégralité des réponses, de résultats,
d’efforts techniques et professionnels et d'absence de négligence, le tout relativement a la
Specification, atoute propriété intellectuelle dans celle- ci et a la prestation ou a la non-
prestation des Services d'assistance. DE PLUS, IL N'Y A AUCUNE GARANTIE ET CONDITION
DE TITRE, DE JOUISSANCE PAISIBLE, DE POSSESSION PAISIBLE, DE SIMILARITE A LA
DESCRIPTION ET D’ABSENCE DE CONTREFACON RELATIVEMENT A LA SPECIFICATION ET A
TOUTE PROPRIETE INTELLECTUELLE DANS CELLE-CI. VOUS SUPPORTEZ TOUS LES RISQUES
DECOULANT DE L’UTILISATION ET DE LA PERFORMANCE DE LA SPECIFICATION ET DE
TOUTE PROPRIETE INTELLECTUELLE DANS CELLE-CI ET CEUX DECOULANT DES SERVICES
D’ASSISTANCE (S'IL Y A LIEU).

EXCLUSION DES DOMMAGES INDIRECTS, ACCESSOIRESET AUTRES. Dans toute la mesure
permise par la |égislation en vigueur, Microsoft et ses fournisseurs ne sont en aucun cas
responsables de tout dommage spécial, indirect, accessoire, moral ou exemplaire quel
gu’il soit (y compris, mais sans limitation, les dommages entrainés par la perte de
bénéfices ou la perte d’'information confidentielle ou autre, I'interruption des affaires, les
préjudices corporels, la perte de confidentialité, le défaut de remplir toute obligation y
compris les obligations de bonne foi et de diligence raisonnable, la négligence et toute
autre perte pécuniaire ou autre perte de quelque nature que ce soit) découlant de, ou de
toute autre maniére lié a, l'utilisation ou I'impossibilité d’utiliser la Spécification, toute
propriété intellectuelle dans celle-ci, la prestation ou la non- prestation des Services
d’assistance ou autrement en vertu de ou relativement a toute disposition de cette
convention, que ce soit en cas de faute, de délit (y compris la négligence), de
responsabilité stricte, de manquement a un contrat ou de manquement a une garantie de
Microsoft ou de I'un de ses fournisseurs, et ce, méme si Microsoft ou I'un de ses
fournisseurs a été avisé de la possibilité de tels dommages.

LIMITATION DE RESPONSABILITE ET RECOURS. Malgré tout dommage que vous pourriez
encourir pour quelque raison que ce soit (y compris, mais sans limitation, tous les
dommages mentionnés ci- dessus et tous les dommages directs et généraux), la seule
responsabilité de Microsoft et de ses fournisseurs en vertu de toute disposition de cette
convention et votre unique recours en regard de tout ce qui précéde sont limités au plus

© 2000 Microsoft Corporation. All rights reserved. 5

FAT: General Overview of On- Disk Format—Page 6

élevé des montants suivants: soit (a) le montant que vous avez payé pour la Spécification,
soit (b) un montant équivalant a cing dollars U.S. (5,00 $ U.S.). Les limitations, exclusions
et renonciations ci- dessus s’appliquent dans toute la mesure permise par la législation en
vigueur, et ce méme si leur application a pour effet de priver un recours de son essence.

DROITS LIMITES DU GOUVERNEMENT AMERICAIN

Tout Produit Logiciel fourni au gouvernement américain conformément a des demandes
émises le ou aprés le ler décembre 1995 est offert avec les restrictions et droits
commerciaux décrits ailleurs dans la présente convention. Tout Produit Logiciel fourni au
gouvernement américain conformément a des demandes émises avant le ler décembre
1995 est offert avec des DROITS LIMITEStels que prévus dans le FAR, 48CFR 52.227- 14
(juin 1987) ou dans le FAR, 48CFR 252.227- 7013 (octobre 1988), tels qu’applicables.
Sauf lorsqu’expressément prohibé par la Iégislation locale, la présente convention est
régie par les lois en vigueur dans la province d'Ontario, Canada. Pour tout différend qui
pourrait découler des présentes, vous acceptez la compétence des tribunaux fédéraux et
provinciaux siégeant a Toronto, Ontario.

Sivous avez des questions concernant cette convention ou si vous désirez communiquer
avec Microsoft pour quelgue raison que ce soit, veuillez contacter la succursale Microsoft
desservant votre pays, ou écrire a: Microsoft Sales Information Center, One Microsoft Way,
Redmond, Washington 98052- 6399.

© 2000 Microsoft Corporation. All rights reserved. 6

FAT: General Overview of On- Disk Format—Page 7

Notational Conventions in this Document

Numbers that have the characters “0x” at the beginning of them are hexadecimal
(base 16) numbers.

Any numbers that do not have the characters “0x” at the beginning are decimal
(base 10) numbers.

The code fragments in this document are written in the ‘C programming language.
Strict typing and syntax are not adhered to.

There are several code fragments in this document that freely mix 32- bit and 16-
bit data elements. It is assumed that you are a programmer who understands how
to properly type such operations so that data is not lost due to truncation of 32- bit
values to 16- bit values. Also take note that all data types are UNSIGNED. Do not do
FAT computations with signed integer types, because the computations will be
wrong on some FAT volumes.

General Comments (Applicable to FAT File System All Types)

All of the FAT file systems were originally developed for the IBM PC machine
architecture. The importance of this is that FAT file system on disk data structure is
al “little endian.” If we look at one 32- bit FAT entry stored on disk as a series of
four 8- bit bytes—the first being byte[0] and the last being byte[4]—here is where
the 32 bits numbered 00 through 31 are (00 being the least significant bit):

byt e[3] 33222222
10987654

byt e[2] 22221111
32109876

byt e[1] 11111100
543210098
byt e[0] 00000000

76543210

This is important if your machine is a “big endian” machine, because you will have
to translate between big and little endian as you move data to and from the disk.

A FAT file system volume is composed of four basic regions, which are laid out in
this order on the volume:

0 — Reserved Region

1 — FAT Region

2 —Root Directory Region (doesn’t exist on FAT32 volumes)

3 —File and Directory Data Region

Boot Sector and BPB

The first important data structure on a FAT volume is called the BPB (BIOS
Parameter Block), which is located in the first sector of the volume in the Reserved
Region. This sector is sometimes called the “boot sector” or the “reserved sector” or

© 2000 Microsoft Corporation. All rights reserved. 7

FAT: General Overview of On- Disk Format—Page 8

the “0Ot sector,” but the important fact is simply that it is the first sector of the
volume.

This is the first thing about the FAT file system that sometimes causes confusion. In
MS-DOS version 1.x, there was not a BPBin the boot sector. In this first version of
the FAT file system, there were only two different formats, the one for single- sided
and the one for double- sided 360K 5.25- inch floppy disks. The determination of
which type was on the disk was done by looking at the first byte of the FAT (the low
8 bits of FAT[0]).

This type of media determination was superseded in MS-DOS version 2.x by putting
a BPB in the boot sector, and the old style of media determination (done by looking
at the first byte of the FAT) was no longer supported. All FAT volumes must have a
BPB in the boot sector.

This brings us to the second point of confusion relating to FAT volume
determination: What exactly does a BPB look like? The BPB in the boot sector
defined for MS-DOS 2.x only allowed for a FAT volume with strictly less than
65,536 sectors (32 MB worth of 512- byte sectors). This limitation was due to the
fact that the “total sectors” field was only a 16- bit field. This limitation was
addressed by MS-DOS 3.x, where the BPB was modified to include a new 32- bit field
for the total sectors value.

The next BPB change occurred with the Microsoft Windows 95 operating system,
specifically OEM Service Release 2 (OSR2), where the FAT32 type was introduced.
FAT16 was limited by the maximum size of the FAT and the maximum valid cluster
size to no more than a 2 GB volume if the disk had 512- byte sectors. FAT32
addressed this limitation on the amount of disk space that one FAT volume could
occupy so that disks larger than 2 GB only had to have one partition defined.

The FAT32 BPB exactly matches the FAT12/FAT16 BPB up to and including the

BPB TotSec32 field. They differ starting at offset 36, depending on whether the
media type is FAT12/FAT16 or FAT32 (see discussion below for determining FAT
type). The relevant point here is that the BPB in the boot sector of a FAT volume
should always be one that has all of the new BPB fields for either the FAT12/FAT16
or FAT32 BPB type. Doing it this way ensures the maximum compatibility of the FAT
volume and ensures that all FAT file system drivers will understand and support the
volume properly, because it always contains all of the currently defined fields.

NOTE: In the following description, all the fields whose names start with BPB_are
part of the BPB. All the fields whose names start with BS are part of the boot sector
and not really part of the BPB. The following shows the start of sector 0 of a FAT
volume, which contains the BPB:

© 2000 Microsoft Corporation. All rights reserved. 8

FAT: General Overview of On- Disk Format—Page 9

Boot Sector and BPB Structure

Name Offset | Size Description

(byte) (bytes)
BS jmpBoot 0 3 Jump instruction to boot code. This field has two
alowed forms:
jmpBoot[0] = OXEB, jmpBoot[1] = 0x??, jmpBoot[2] =
0x90
and
jmpBoot[0] = OXE9, jmpBoot[1] = 0x??, jmpBoot[2] =
0x??

0x?? indicates that any 8- bit value is allowed in that
byte. What this forms is a three- byte Intel x86
unconditional branch (jump) instruction that jumps to
the start of the operating system bootstrap code. This
code typically occupies the rest of sector 0 of the volume
following the BPB and possibly other sectors. Either of
these forms is acceptable. JmpBoot[0] = OXEB is the
more frequently used format.

BS OEMName 3 8 “MSWIN4.1" There are many misconceptions about this
field. It is only a name string. Microsoft operating
systems don't pay any attention to this field. Some FAT
drivers do. This is the reason that the indicated string,
“MSWIN4.1", is the recommended setting, because it is
the setting least likely to cause compatibility problems.
If you want to put something else in here, that is your
option, but the result may be that some FAT drivers
might not recognize the volume. Typically this is some
indication of what system formatted the volume.

BPB_BytsPerSec 11 2 Count of bytes per sector. This value may take on only
the following values: 512, 1024, 2048 or 4096. If
maximum compatibility with old implementations is
desired, only the value 512 should be used. There is alot
of FAT code in the world that is basically “hard wired” to
512 bytes per sector and doesn’t bother to check this
field to make sure it is 512. Microsoft operating systems
will properly support 1024, 2048, and 4096.

Note: Do not misinterpret these statements about
maximum compatibility. If the media being recorded has
a physical sector size N, you must use N and this must
still be less than or equal to 4096. Maximum
compatibility is achieved by only using media with
specific sector sizes.

BPB_SecPerClus 13 1 Number of sectors per allocation unit. This value must
be a power of 2 that is greater than 0. The legal values
are 1, 2, 4, 8, 16, 32, 64, and 128. Note however, that a
value should never be used that results in a “bytes per
cluster” value (BPB_BytsPerSec * BPB_SecPerClus) greater
than 32K (32 * 1024). There is a misconception that
values greater than this are OK. Values that cause a
cluster size greater than 32K bytes do not work
properly; do not try to define one. Some versions of
some systems allow 64K bytes per cluster value. Many
application setup programs will not work correctly on
such a FAT volume.

© 2000 Microsoft Corporation. All rights reserved. 9

FAT: General Overview of On- Disk Format—Page 10

BPB_RsvdSecCnt 14 2 Number of reserved sectors in the Reserved region of the
volume starting at the first sector of the volume. This
field must not be 0. For FAT12 and FAT16 volumes, this
value should never be anything other than 1. For FAT32
volumes, this value is typically 32. There is alot of FAT
code in the world “hard wired” to 1 reserved sector for
FAT12 and FAT16 volumes and that doesn’t bother to
check this field to make sure it is 1. Microsoft operating
systems will properly support any non- zero value in this
field.

BPB_NUmFATSs 16 1 The count of FAT data structures on the volume. This
field should always contain the value 2 for any FAT
volume of any type. Although any value greater than or
equal to 1 is perfectly valid, many software programs
and afew operating systems' FAT file system drivers
may not function properly if the value is something
other than 2. All Microsoft file system drivers will
support avalue other than 2, but it is still highly
recommended that no value other than 2 be used in this
field.

The reason the standard value for this field is 2 is to
provide redun dancy for the FAT data structure so that if
a sector goes bad in one of the FATSs, that data is not lost
because it is duplicated in the other FAT. On non- disk-
based media, such as FLASH memory cards, where such
redundancy is a useless feature, a value of 1 may be
used to save the space that a second copy of the FAT
uses, but some FAT file system drivers might not
recognize such avolume properly.

BPB_RootEntCnt 17 2 For FAT12 and FAT16 volumes, this field contains the
count of 32- byte directory entries in the root directory.
For FAT32 volumes, this field must be set to 0. For
FAT12 and FAT16 volumes, this value should always
specify a count that when multiplied by 32 results in an
even multiple of BPB_BytsPerSec. For maximum
compatibility, FAT16 volumes should use the value 512.

BPB_TotSec16 19 2 This field is the old 16- bit total count of sectors on the
volume. This count includes the count of all sectors in
all four regions of the volume. This field can be 0; if it is
0, then BPB_TotSec32 must be non- zero. For FAT32
volumes, this field must be 0. For FAT12 and FAT16
volumes, this field contains the sector count, and
BPB_TotSec32 is O if the total sector count “fits” (is less
than 0x10000).

BPB_Media 21 1 O0xF8 is the standard value for “fixed” (non- removable)
media. For removable media, OxFO is frequently used.
The legal values for this field are OxF0O, 0xF8, OxF9, OxFA,
0xFB, OxFC, 0xFD, OxFE, and OxFF. The only other
important point is that whatever value is put in here
must also be put in the low byte of the FAT[Q] entry.
This dates back to the old MS-DOS 1.x media
determination noted earlier and is no longer usually
used for anything.

BPB_FATSz16 22 2 This field is the FAT12/FAT16 16- bit count of sectors
occupied by ONE FAT. On FAT32 volumes this field must
be 0, and BPB_FATSz32 contains the FAT size count.

© 2000 Microsoft Corporation. All rights reserved. 10

FAT: General Overview of On- Disk Format—Page 11

BPB_SecPerTrk 24 2 Sectors per track for interrupt Ox13. This field is only
relevant for media that have a geometry (volume is
broken down into tracks by multiple heads and
cylinders) and are visible on interrupt 0x13. This field
contains the “sectors per track” geometry value.

BPB_NumHeads 26 2 Number of heads for interrupt 0x13. This field is
relevant as discussed earlier for BPB_SecPerTrk. This
field contains the one based “count of heads”. For
example, on a 1.44 MB 3.5-inch floppy drive this value is
2

BPB_HiddSec 28 4 Count of hidden sectors preceding the partition that
contains this FAT volume. This field is generally only
relevant for media visible on interrupt 0x13. This field
should always be zero on media that are not partitioned.
Exactly what value is appropriate is operating system
specific.

BPB_TotSec32 32 4 This field is the new 32- hit total count of sectors on the
volume. This count includes the count of all sectors in
all four regions of the volume. This field can be 0; if it is
0, then BPB TotSecl6 must be non- zero. For FAT32
volumes, this field must be non- zero. For FAT12/FAT16
volumes, this field contains the sector count if
BPB_TotSec16 is O (count is greater than or equal to
0x10000).

At this point, the BPB/boot sector for FAT12 and FAT16 differs from the BPB/boot
sector for FAT32. The first table shows the structure for FAT12 and FAT16 starting
at offset 36 of the boot sector.

Fat12 and Fatl6 Structure Starting at Offset 36

Name Offset | Size Description
(byte) (bytes)
BS DrvNum 36 1 Int Ox13 drive number (e.g. 0x80). This field supports

MS-DOS bootstrap and is set to the INT 0x13 drive
number of the media (0x00 for floppy disks, 0x80 for

hard disks).
NOTE: This field is actually operating system specific.
BS Reservedl 37 1 Reserved (used by Windows NT). Code that formats FAT
volumes should always set this byte to O.
BS BootSig 38 1 Extended boot signature (0x29). This is a signature byte

that indicates that the following three fields in the boot
sector are present.

BS VollD 39 4 Volume serial number. This field, together with

BS VolLab, supports volume tracking on removable
media. These values allow FAT file system drivers to
detect that the wrong disk isinserted in aremovable
drive. This ID is usually generated by simply combining
the current date and time into a 32- bit value.

BS VolLab 43 11 Volume label. This field matches the 11- byte volume
label recorded in the root directory.

NOTE: FAT file system drivers should make sure that
they update this field when the volume label file in the
root directory has its name changed or created. The
setting for this field when there is no volume label is the
string “NO NAME

© 2000 Microsoft Corporation. All rights reserved. 11

FAT: General Overview of On- Disk Format—Page 12

BS FilSysType 54 8 One of the strings “FAT12 ", “FAT16 ", or “FAT

". NOTE: Many people think that the string in this field
has something to do with the determination of what type
of FAT—FAT12, FAT16, or FAT32—that the volume has.
This is not true. You will note from its name that this
field is not actually part of the BPB. This string is
informational only and is not used by Microsoft file
system drivers to determine FAT typ,e because it is
frequently not set correctly or is not present. See the
FAT Type Determination section of this document. This
string should be set based on the FAT type though,
because some non- Microsoft FAT file system drivers do
look at it.

© 2000 Microsoft Corporation. All rights reserved. 12

FAT: General Overview of On- Disk Format—Page 13

Here is the structure for FAT32 starting at offset 36 of the boot sector.

FAT32 Structure Starting at Offset 36

Name

Offset
(byte)

Size

Description

BPB_FATSz32

36

(bytes)
4

This field is only defined for FAT32 media and does not
exist on FAT12 and FAT16 media. This field is the FAT32
32- bit count of sectors occupied by ONE FAT.

BPB FATSz16 must be 0.

BPB_ExtFlags

40

This field is only defined for FAT32 media and does not
exist on FAT12 and FAT16 media.
Bits 0-3 -- Zero- based number of active FAT. Only valid if
mirroring is disabled.
Bits 4- 6 - - Reserved.
Bit 7 -- 0 means the FAT is mirrored at runtime
into al FATSs.
-- 1 means only one FAT is active; it is the one
referenced in bits 0- 3.
Bits 8- 15 - - Reserved.

BPB_FSVer

42

This field is only defined for FAT32 media and does not
exist on FAT12 and FAT16 media. High byte is major
revision number. Low byte is minor revision number.
This is the version number of the FAT32 volume. This
supports the ability to extend the FAT32 media type in
the future without worrying about old FAT32 drivers
mounting the volume. This document defines the
version to 0:0. If this field is non- zero, back- level
Windows versions will not mount the volume.

NOTE: Disk utilities should respect this field and not
operate on volumes with a higher major or minor
version number than that for which they were designed.
FAT32 file system drivers must check this field and not
mount the volume if it does not contain a version
number that was defined at the time the driver was
written.

BPB_RootClus

44

This field is only defined for FAT32 media and does not
exist on FAT12 and FAT16 media. This is set to the
cluster number of the first cluster of the root directory,
usually 2 but not required to be 2.

NOTE: Disk utilities that change the location of the root
directory should make every effort to place the first
cluster of the root directory in the first non- bad cluster
on the drive (i.e., in cluster 2, unless it's marked bad).
This is specified so that disk repair utilities can easily
find the root directory if this field accidentally gets
zeroed.

BPB_FSInfo

48

This field is only defined for FAT32 media and does not
exist on FAT12 and FAT16 media. Sector number of FSINFO
structure in the reserved area of the FAT32 volume. Usually
1.

NOTE: There will be a copy of the FSINFO structure in
BackupBoot, but only the copy pointed to by this field will
be kept up to date (i.e.,, both the primary and backup boot
record will point to the same FSINFO sector).

BPB_BkBootSec

50

This field is only defined for FAT32 media and does not
exist on FAT12 and FAT16 media. If non- zero, indicates
the sector number in the reserved area of the volume of
a copy of the boot record. Usually 6. No value other than
6 is recommended.

© 2000 Microsoft Corporation. All rights reserved.

13

FAT: General Overview of On- Disk Format—Page 14

BPB_Reserved 52 12 This field is only defined for FAT32 media and does not
exist on FAT12 and FAT16 media. Reserved for future
expansion. Code that formats FAT32 volumes should
aways set all of the bytes of this field to 0.

BS DrvNum 64 1 This field has the same definition as it does for FAT12
and FAT16 media. The only difference for FAT32 media
is that the field is at a different offset in the boot sector.

BS Reservedl 65 1 This field has the same definition as it does for FAT12
and FAT16 media. The only difference for FAT32 media
is that the field is at a different offset in the boot sector.

BS BootSig 66 1 This field has the same definition as it does for FAT12
and FAT16 media. The only difference for FAT32 media
is that the field is at a different offset in the boot sector.

BS VollD 67 4 This field has the same definition as it does for FAT12
and FAT16 media. The only difference for FAT32 media
is that the field is at a different offset in the boot sector.

BS VolLab 71 11 This field has the same definition as it does for FAT12
and FAT16 media. The only difference for FAT32 media
is that the field is at a different offset in the boot sector.

BS FilSysType 82 8 Always set to the string "FAT32 ". Please see the
note for this field in the FAT12/FAT16 section earlier.
This field has nothing to do with FAT type
determination.

There is one other important note about Sector 0 of a FAT volume. If we consider
the contents of the sector as a byte array, it must be true that sector[510] equals
0x55, and sector[511] equals OxAA.

NOTE: Many FAT documents mistakenly say that this OXAAS55 signature occupies

the “last 2 bytes of the boot sector”. This statement is correct if — and only if —

BPB_BytsPerSec is 512. If BPB_BytsPerSec is greater than 512, the offsets of these

signature bytes do not change (although it is perfectly OK for the last two bytes at
the end of the boot sector to also contain this signature).

Check your assumptions about the value in the BPB_TotSec16/32 field. Assume we
have a disk or partition of size in sectors DskSz. If the BPB TotSec field (either

BPB TotSecl6 or BPB TotSec32 — whichever is non- zero) is less than or equal to
DskSz, there is nothing whatsoever wrong with the FAT volume. In fact, it is not at
all unusual to have a BPB_TotSecl16/32 value that is slightly smaller than DskSz. It is
also perfectly OK for the BPB_TotSec16/32 value to be considerably smaller than
DskSz.

All this means is that disk space is being wasted. It does not by itself mean that the
FAT volume is damaged in some way. However, if BPB_TotSec16/32 is larger than
DskSz, the volume is seriously damaged or malformed because it extends past the
end of the media or overlaps data that follows it on the disk. Treating a volume for
which the BPB TotSec16/32 value is “too large” for the media or partition as valid
can lead to catastrophic data loss.

FAT Data Structure

The next data structure that is important is the FAT itself. What this data structure
does is define asingly linked list of the “extents” (clusters) of afile. Note at this
point that a FAT directory or file container is nothing but aregular file that has a
special attribute indicating it is a directory. The only other special thing about a
directory is that the data or contents of the “file” is a series of 32=byte FAT

© 2000 Microsoft Corporation. All rights reserved. 14

FAT: General Overview of On- Disk Format—Page 15

directory entries (see discussion below). In all other respects, a directory is just like
afile. The FAT maps the data region of the volume by cluster number. The first data
cluster is cluster 2.

The first sector of cluster 2 (the data region of the disk) is computed using the BPB
fields for the volume as follows. First, we determine the count of sectors occupied
by the root directory:

Root Di r Sectors = ((BPB_Root EntCnt * 32) + (BPB_BytsPerSec — 1)) / BPB_Byt sPer Sec;

Note that on a FAT32 volume the BPB_RootEntCnt value is always 0, so on a FAT32
volume RootDirSectors is always 0. The 32 in the above is the size of one FAT
directory entry in bytes. Note also that this computation rounds up.

The start of the data region, the first sector of cluster 2, is computed as follows:

| f (BPB_FATSz16 != 0)
FATSz = BPB_FATSz16;
El se
FATSz = BPB_FATSz32;

Fi r st Dat aSect or = BPB_ResvdSecCnt + (BPB_NunFATs * FATSz) + RootDir Sectors;

NOTE: This sector number is relative to the first sector of the volume that contains
the BPB (the sector that contains the BPB is sector number 0). This does not
necessarily map directly onto the drive, because sector 0 of the volume is not
necessarily sector 0 of the drive due to partitioning.

Given any valid data cluster number N, the sector number of the first sector of that
cluster (again relative to sector 0 of the FAT volume) is computed as follows:

FirstSectorof uster = ((N - 2) * BPB_SecPerd us) + FirstDataSector;

NOTE: Because BPB_SecPerClus is restricted to powers of 2 (1,2,4,8,16,32....), this
means that division and multiplication by BPB_SecPerClus can actually be
performed via SHIFT operations on 2s complement architectures that are usually
faster instructions than MULT and DIV instructions. On current Intel X86
processors, this is largely irrelevant though because the MULT and DIV machine
instructions are heavily optimized for multiplication and division by powers of 2.

FAT Type Determination

There is considerable confusion over exactly how this works, which leads to many
“off by 17, “off by 2", “off by 10", and “massively off” errors. It isreally quite simple
how this works. The FAT type—one of FAT12, FAT16, or FAT32—is determined by
the count of clusters on the volume and nothing else.

Please read everything in this section carefully, all of the words are important. For
example, note that the statement was “count of clusters.” This is not the same thing
as “maximum valid cluster number,” because the first data cluster is 2 and not O or
1.

To begin, let’s discuss exactly how the “count of clusters” value is determined. This

is all done using the BPB fields for the volume. First, we determine the count of
sectors occupied by the root directory as noted earlier.

© 2000 Microsoft Corporation. All rights reserved. 15

FAT: General Overview of On- Disk Format—Page 16

Root Di r Sectors = ((BPB_RootEntCnt * 32) + (BPB_BytsPerSec — 1)) / BPB_BytsPer Sec;

Note that on a FAT32 volume, the BPB_RootEntCnt value is always 0O; so on a FAT32
volume, RootDirSectors is always 0.

Next, we determine the count of sectors in the data region of the volume:

| f(BPB_FATSz16 != 0)
FATSz = BPB_FATSz16;
El se
FATSz = BPB_FATSz32;

| f (BPB_Tot Secl16 != 0)

Tot Sec = BPB_Tot Sec16;
El se

Tot Sec = BPB_Tot Sec32;

Dat aSec = Tot Sec — (BPB_ResvdSecCnt + (BPB_NunFATs * FATSz) + RootDirSectors);

Now we determine the count of clusters:

Count of Cl usters = DataSec / BPB_SecPer d us;
Please note that this computation rounds down.

Now we can determine the FAT type. Please note carefully or you will commit an off-
by- one error!

In the following example, when it says <, it does not mean <=. Note also that the
numbers are correct. The first number for FAT12 is 4085; the second number for
FAT16 is 65525. These numbers and the ‘<’ signs are not wrong.

| f(Countof A usters < 4085) {

/* Volune is FAT12 */

} else if(Countof Custers < 65525) {
/* Volume is FAT16 */

} else {
/* Volune is FAT32 */

}

This is the one and only way that FAT type is determined. There is no such thing as
a FAT12 volume that has more than 4084 clusters. There is no such thing as a
FAT16 volume that has less than 4085 clusters or more than 65,524 clusters. There
is no such thing as a FAT32 volume that has less than 65,525 clusters. If you try to
make a FAT volume that violates this rule, Microsoft operating systems will not
handle them correctly because they will think the volume has a different type of
FAT than what you think it does.

NOTE: As is noted numerous times earlier, the world is full of FAT code that is
wrong. There is alot of FAT type code that is off by 1 or 2 or 8 or 10 or 16. For this
reason, it is highly recommended that if you are formatting a FAT volume which has
maximum compatibility with all existing FAT code, then you should you avoid
making volumes of any type that have close to 4,085 or 65,525 clusters. Stay at least
16 clusters on each side away from these cut- over cluster counts.

Note also that the CountofClusters value is exactly that—the count of data clusters
starting at cluster 2. The maximum valid cluster number for the volume is

© 2000 Microsoft Corporation. All rights reserved. 16

FAT: General Overview of On- Disk Format—Page 17

CountofClusters + 1, and the “count of clusters including the two reserved clusters”
is CountofClusters + 2.

There is one more important computation related to the FAT. Given any valid
cluster number N, where in the FAT(S) is the entry for that cluster number? The only
FAT type for which this is complex is FAT12. For FAT16 and FAT32, the
computation is simple:

| f (BPB_FATSz16 != 0)
FATSz = BPB_FATSz16;
El se
FATSz = BPB_FATSz32;

| f (FATType == FAT16)
FATO fset = N * 2;

El se if (FATType == FAT32)
FATOF fset = N * 4;

Thi sSFATSecNum = BPB_ResvdSecCnt + (FATOfset / BPB_Byt sPer Sec);
Thi sSFATENt O f set = REM FATOf fset / BPB_Byt sPer Sec) ;

REM(...) is the remainder operator. That means the remainder after division of
FATOffset by BPB_BytsPerSec. ThisFATSecNum is the sector number of the FAT
sector that contains the entry for cluster N in the first FAT. If you want the sector
number in the second FAT, you add FATSz to ThisFATSecNum ; for the third FAT,
you add 2*FATSz, and so on.

You now read sector number ThisFATSecNum (remember this is a sector number
relative to sector 0 of the FAT volume). Assume this is read into an 8- bit byte array
named SecBuff. Also assume that the type WORD is a 16- bit unsigned and that the
type DWORD is a 32- bit unsigned.

| f (FATType == FAT16)
FAT16d usEntryVal = *((WORD *) &SecBuf f[Thi SFATEnt Of fset]);
El se
FAT32C usEntryVal = (*((DWORD *) &SecBuff[Thi sFATEnt Ofset])) & OxOFFFFFFF;

Fetches the contents of that cluster. To set the contents of this same cluster you do
the following:
| f (FATType == FAT16)

*((WORD *) &SecBuff[Thi sFATEnt Off set]) = FAT16d usEntryVal ;
El se {

FAT32C usEntryVal = FAT32C usEntryVal & OxOFFFFFFF;
*((DWORD *) &SecBuff[Thi sSFATEnt Offset]) =
(*((DWORD *) &SecBuf f [Thi SFATEnt OFf set])) & O0xF0000000;

*((DWORD *) &SecBuff[Thi sFATEnt Offset]) =
(*((DWORD *) &SecBuff[Thi sFATEnt O fset])) | FAT32C usEntryVal;

Note how the FAT32 code above works. A FAT32 FAT entry is actually only a 28- bit
entry. The high 4 bits of a FAT32 FAT entry are reserved. The only time that the
high 4 bits of FAT32 FAT entries should ever be changed is when the volume is
formatted, at which time the whole 32- bit FAT entry should be zeroed, including
the high 4 bits.

A bit more explanation is in order here, because this point about FAT32 FAT entries
seems to cause a great deal of confusion. Basically 32- bit FAT entries are not really
32- bit values; they are only 28- bit values. For example, all of these 32- bit cluster
entry values: 0x10000000, 0xFO000000, and 0x00000000 all indicate that the

© 2000 Microsoft Corporation. All rights reserved. 17

FAT: General Overview of On- Disk Format—Page 18

cluster is FREE, because you ignore the high 4 bits when you read the cluster entry
value. If the 32- bit free cluster value is currently 0x30000000 and you want to mark
this cluster as bad by storing the value OXOFFFFFF7 in it. Then the 32- bit entry will
contain the value Ox3FFFFFF7 when you are done, because you must preserve the
high 4 bits when you write in the OXOFFFFFF7 bad cluster mark.

Take note that because the BPB_BytsPerSec value is always divisible by 2 and 4, you
never have to worry about a FAT16 or FAT32 FAT entry spanning over a sector
boundary (this is not true of FAT12).

The code for FAT12 is more complicated because there are 1.5 bytes (12- bits) per
FAT entry.
if (FATType == FAT12)
FATO fset = N+ (N/ 2);
/* Multiply by 1.5 without using floating point, the divide by 2 rounds DOMWN */

Thi sFATSecNum = BPB_ResvdSecCnt + (FATOffset / BPB_Byt sPer Sec);
Thi sSFATENt OF f set = REM FATOf fset / BPB_Byt sPer Sec) ;

We now have to check for the sector boundary case:

I f(Thi SFATEnt O f set == (BPB_BytsPerSec — 1)) {

/* This cluster access spans a sector boundary in the FAT */
/* There are a nunber of strategies to handling this. The */
/* easiest is to always | oad FAT sectors into nenory */
/* in pairs if the volume is FAT12 (if you want to |oad */
/* FAT sector N, you also |oad FAT sector N+1 i medi ately */
/* following it in menory unless sector Nis the |ast FAT */
/* sector). It is assunmed that this is the strategy used here */
/* which makes this if test for a sector boundary span */
/* unnecessary. */

}

We now access the FAT entry as a WORD just as we do for FAT16, but if the cluster
number is EVEN, we only want the low 12- bits of the 16- bits we fetch; and if the
cluster number is ODD, we only want the high 12- bits of the 16- bits we fetch.

FAT12C usEntryVal = *((WORD *) &SecBuf f[Thi SFATEnt Of fset]);
If(N & 0x0001)

FAT12C usEntryVal = FAT12C usEntryVal >> 4; /* Cluster nunmber is ODD */
El se

FAT12C usEntryVal = FAT12C usEntryVal & OxOFFF; /* Cluster nunber is EVEN */

Fetches the contents of that cluster. To set the contents of this same cluster you do
the following:

If(N & 0x0001) {
FAT12C usEntryVal = FAT12d usEntryVal << 4; /* Cluster nunber is ODD */
*((WORD *) &SecBuff[Thi SFATEntOffset]) =
(*((WORD *) &SecBuff[Thi sSFATEnt Offset])) & O0xO000F;
} Else {
FAT12C usEntryVal = FAT12C usEntryVal & OxOFFF; /* Cluster nunber is EVEN */
*((WORD *) &SecBuff[Thi sSFATEnt Offset]) =
(*((WORD *) &SecBuff[Thi sFATEnt OFfset])) & O0xFO0OO;

*((WORD *) &SecBuff[Thi sFATENt O fset]) =
(*((WORD *) &SecBuff[Thi sFATEnt O fset])) | FAT12C usEntryVal;

NOTE: It is assumed that the >> operator shifts a bit value of 0 into the high 4 bits
and that the << operator shifts a bit value of 0 into the low 4 bits.

© 2000 Microsoft Corporation. All rights reserved. 18

FAT: General Overview of On- Disk Format—Page 19

The way the data of afile is associated with the file is as follows. In the directory
entry, the cluster number of the first cluster of the file is recorded. The first cluster
(extent) of the file is the data associated with this first cluster number, and the
location of that data on the volume is computed from the cluster number as
described earlier (computation of FirstSectorofCluster).

Note that a zero- length file—a file that has no data allocated to it—has a first
cluster number of 0 placed in its directory entry. This cluster location in the FAT
(see earlier computation of ThisFATSecNum and ThisFATEntOffset) contains either
an EOC mark (End Of Clusterchain) or the cluster number of the next cluster of the
file. The EOC value is FAT type dependant (assume FATContent is the contents of
the cluster entry in the FAT being checked to see whether it is an EOC mark):

| SEOF = FALSE;
I f (FATType == FAT12) {
| f (FATCont ent >= OxOFF8)
| SEOF = TRUE;
} else if(FATType == FAT16) {
| f (FATCont ent >= OxFFF8)
| SEOF = TRUE;
} else if (FATType == FAT32) {
| f (FATCont ent >= OxOFFFFFF8)
| sSEOF = TRUE;
}

Note that the cluster number whose cluster entry in the FAT contains the EOC mark
is allocated to the file and is also the last cluster allocated to the file. Microsoft
operating system FAT drivers use the EOC value OxOFFF for FAT12, OxFFFF for
FAT16, and OxOFFFFFFF for FAT32 when they set the contents of a cluster to the
EOC mark. There are various disk utilities for Microsoft operating systems that use
a different value, however.

There is also a special “BAD CLUSTER” mark. Any cluster that contains the “BAD
CLUSTER” value in its FAT entry is a cluster that should not be placed on the free
list because it is prone to disk errors. The “BAD CLUSTER” value is OxOFF7 for
FAT12, OXFFF7 for FAT16, and OXOFFFFFF7 for FAT32. The other relevant note here
is that these bad clusters are also lost clusters—clusters that appear to be allocated
because they contain a non- zero value but which are not part of any files allocation
chain. Disk repair utilities must recognize lost clusters that contain this special
value as bad clusters and not change the content of the cluster entry.

NOTE: It is not possible for the bad cluster mark to be an allocatable cluster
number on FAT12 and FAT16 volumes, but it is feasible for OxOFFFFFF7 to be an
allocatable cluster number on FAT32 volumes. To avoid possible confusion by disk
utilities, no FAT32 volume should ever be configured such that OXOFFFFFF7 is an
allocatable cluster number.

The list of free clusters in the FAT is nothing more than the list of all clusters that
contain the value 0 in their FAT cluster entry. Note that this value must be fetched
as described earlier as for any other FAT entry that is not free. This list of free
clusters is not stored anywhere on the volume; it must be computed when the
volume is mounted by scanning the FAT for entries that contain the value 0. On
FAT32 volumes, the BPB_FSInfo sector may contain avalid count of free clusters on
the volume. See the documentation of the FAT32 FSIinfo sector.

© 2000 Microsoft Corporation. All rights reserved. 19

FAT: General Overview of On- Disk Format—Page 20

What are the two reserved clusters at the start of the FAT for? The first reserved
cluster, FAT[Q], contains the BPB_Media byte value in its low 8 bits, and all other bits
are set to 1. For example, if the BPB_Media value is OxF8, for FAT12 FAT[0] =
OXOFF8, for FAT16 FAT[0] = OxFFF8, and for FAT32 FAT[0] = OxOFFFFFF8. The
second reserved cluster, FAT[1], is set by FORMAT to the EOC mark. On FAT12
volumes, it is not used and is simply always contains an EOC mark. For FAT16 and
FAT32, the file system driver may use the high two bits of the FAT[1] entry for dirty
volume flags (al other bits, are always left set to 1). Note that the bit location is
different for FAT16 and FAT32, because they are the high 2 bits of the entry.

For FAT16:
Cl nShut Bi t Mask = 0x8000;
Hr dEr r Bi t Mask = 0x4000;
For FAT32:
Cl nShut Bi t Mask = 0x08000000;
Hr dEr r Bi t Mask = 0x04000000;

Bit CInShutBitMask —If bit is 1, volume is “clean”.
If bit is 0, volume is “dirty”. This indicates that the file system
driver did not Dismount the volume properly the last time it
had the volume mounted. It would be a good idea to run a
Chkdsk /Scandisk disk repair utility on it, because it may be
damaged.

Bit HrdErrBitMask — If this bit is 1, no disk read/write errors were encountered.
If this bit is O, the file system driver encountered a disk I/O
error on the Volume the last time it was mounted, which is an
indicator that some sectors may have gone bad on the volume.
It would be a good idea to run a Chkdsk /Scandisk disk repair
utility that does surface analysis on it to look for new bad
sectors.

Here are two more important notes about the FAT region of a FAT volume:

1. The last sector of the FAT is not necessarily all part of the FAT. The FAT
stops at the cluster number in the last FAT sector that corresponds to the
entry for cluster number CountofClusters + 1 (see the CountofClusters
computation earlier), and this entry is not necessarily at the end of the last
FAT sector. FAT code should not make any assumptions about what the
contents of the last FAT sector are after the CountofClusters + 1 entry. FAT
format code should zero the bytes after this entry though.

2. The BPB_FATSz16 (BPB_FATSz32 for FAT32 volumes) value may be bigger
than it needs to be. In other words, there may be totally unused FAT sectors
at the end of each FAT in the FAT region of the volume. For this reason, the
last sector of the FAT is always computed using the CountofClusters + 1
value, never from the BPB_FATSz16/32 value. FAT code should not make any
assumptions about what the contents of these “extra’ FAT sectors are. FAT
format code should zero the contents of these extra FAT sectors though.

FAT Volume Initialization

At this point, the careful reader should have one very interesting question. Given
that the FAT type (FAT12, FAT16, or FAT32) is dependant on the number of clusters
—and that the sectors available in the data area of a FAT volume is dependant on
the size of the FAT—when handed an unformatted volume that does not yet have a

© 2000 Microsoft Corporation. All rights reserved. 20

FAT: General Overview of On- Disk Format—Page 21

BPB, how do you determine all this and compute the proper values to put in
BPB_SecPerClus and either BPB_FATSz16 or BPB_FATSz32? The way Microsoft
operating systems do this is with a fixed value, several tables, and a clever piece of
arithmetic.

Microsoft operating systems only do FAT12 on floppy disks. Because there is a
limited number of floppy formats that all have a fixed size, this is done with a
simple table:

“If it is a floppy of this type, then the BPB |l ooks like this.”

There is no dynamic computation for FAT12. For the FAT12 formats, all the
computation for BPB_SecPerClus and BPB_FATSz16 was worked out by hand on a
piece of paper and recorded in the table (being careful of course that the resultant
cluster count was always less than 4085). If your media is larger than 4 MB, do not
bother with FAT12. Use smaller BPB_SecPerClus values so that the volume will be
FAT16.

The rest of this section is totally specific to drives that have 512 bytes per sector.
You cannot use these tables, or the clever arithmetic, with drives that have a
different sector size. The “fixed value’ is simply avolume size that is the “FAT16 to
FAT32 cutover value”. Any volume size smaller than this is FAT16 and any volume
of this size or larger is FAT32. For Windows, this value is 512 MB. Any FAT volume
smaller than 512 MBis FAT16, and any FAT volume of 512 MB or larger is FAT32.

Please don’t draw an incorrect conclusion here.

There are many FAT16 volumes out there that are larger than 512 MB. There are
various ways to force the format to be FAT16 rather than the default of FAT32, and
there is a great deal of code that implements different limits. All we are talking
about here is the default cutover value for MS-DOS and Windows on volumes that
have not yet been formatted. There are two tables—one is for FAT16 and the other
is for FAT32. An entry in these tables is selected based on the size of the volume in
512 byte sectors (the value that will go in BPB_TotSec16 or BPB TotSec32), and the
value that this table sets is the BPB_SecPerClus value.

© 2000 Microsoft Corporation. All rights reserved. 21

/

FAT: General Overview of On- Disk Format—Page 22

struct DSKSZTOSECPERCLUS {
DWORD Di skSi ze;
BYTE SecPer d usVal ;
b

*

*This is the table for FAT16 drives. NOTE that this table includes

EEE R S I

*

ECE I R S I

~

entries for disk sizes larger than 512 MB even though typically
only the entries for disks < 512 MB in size are used.

The way this table is accessed is to look for the first entry

in the table for which the disk size is less than or equal

to the DiskSize field in that table entry. For this table to
wor k properly BPB_RsvdSecCnt nust be 1, BPB_NunfATs

must be 2, and BPB_Root Ent Cnt nust be 512. Any of these val ues
being different may require the first table entries DiskSize val ue
to be changed ot herwi se the cluster count may be to | ow for FAT16.
*/

DSKSZTOSECPERCLUS DskTabl eFAT16 [] = {
{ 8400, 0}, /* disks up to 4.1 MB, the 0 value for
{ 32680, 2}, [/* disks up to 16 MB, 1k cluster */
{ 262144, 4}, /* disks up to 128 MB, 2k cluster */
{ 524288, 8}, /* disks up to 256 MB, 4k cluster */
{ 1048576, 16}, /* disks up to 512 MB, 8k cluster */
/* The entries after this point are not used unless FAT16 is
{ 2097152, 32}, /* disks up to 1 GB, 16k cluster */
{ 4194304, 64}, /* disks up to 2 @B, 32k cluster */

{ OxXFFFFFFFF, 0} /* any disk greater than 2GB, 0 value for SecPerd usVal

b

This is the table for FAT32 drives. NOTE that this table includes
entries for disk sizes smaller than 512 MB even though typically
only the entries for disks >= 512 MB in size are used.

The way this table is accessed is to look for the first entry

in the table for which the disk size is |less than or equal

to the DiskSize field in that table entry. For this table to
wor k properly BPB_RsvdSecCnt must be 32, and BPB_NunfATs

SecPer d usVal

forced */

nmust be 2. Any of these values being different may require the first
table entries DiskSize value to be changed otherw se the cluster count

may be to | ow for FAT32.

DSKSZTOSECPERCLUS DskTabl eFAT32 [] = {
{ 66600, 0}, /* disks up to 32.5 MB, the 0 value for SecPerC usVal
{ 532480, 1}, /* disks up to 260 MB, .5k cluster */
{ 16777216, 8}, /* disks up to 8 GB, 4k cluster */
{ 33554432, 16}, /* disks up to 16 GB, 8k cluster */
{ 67108864, 32}, /* disks up to 32 @B, 16k cluster */
{ OxFFFFFFFF, 64}/* disks greater than 32GB, 32k cluster */

b

So given adisk size and a FAT type of FAT16 or FAT32, we now have a
BPB_SecPerClus value. The only thing we have left is do is to compute how many
sectors the FAT takes up so that we can set BPB_FATSz16 or BPB_FATSz32. Note
that at this point we assume that BPB_RootEntCnt, BPB_RsvdSecCnt, and
BPB_NumFATS are appropriately set. We also assume that DskSize is the size of the
volume that we are either going to put in BPB_TotSec32 or BPB_TotSec16.

© 2000 Microsoft Corporation. All rights reserved. 22

trips an error */

trips an error */

trips an error */

FAT: General Overview of On- Disk Format—Page 23

Root Di r Sectors = ((BPB_RootEntCnt * 32) + (BPB_BytsPerSec — 1)) / BPB_BytsPer Sec;
TnpVal 1 = DskSize — (BPB_ResvdSecCnt + RootDirSectors);
TnpVal 2 = (256 * BPB_SecPer d us) + BPB_NunFATs;
| f (FATType == FAT32)
TrpVal 2 = TnpVal 2 /| 2;
FATSz = (TMPVal 1 + (TnpVal2 — 1)) / TnpVal 2;
I f (FATType == FAT32) {
BPB_FATSz16 = O;
BPB_FATSz32 FATSz;
} else {
BPB_FATSz16 = LOWORD(FATSz);
/* there is no BPB_FATSz32 in a FAT16 BPB */

}

Do not spend too much time trying to figure out why this math works. The basis for
the computation is complicated; the important point is that this is how Microsoft
operating systems do it, and it works. Note, however, that this math does not work
perfectly. It will occasionally set a FATSz that is up to 2 sectors too large for FAT16,
and occasionally up to 8 sectors too large for FAT32. It will never compute a FATSz
value that is too small, however. Because it is OK to have a FATSz that is too large,
at the expense of wasting a few sectors, the fact that this computation is
surprisingly simple more than makes up for it being off in a safe way in some cases.

FAT32 FSInfo Sector Structure and Backup Boot Sector

On a FAT32 volume, the FAT can be a large data structure, unlike on FAT16 where it
islimited to a maximum of 128K worth of sectors and FAT12 where it is limited to a
maximum of 6K worth of sectors. For this reason, a provision is made to store the
“last known” free cluster count on the FAT32 volume so that it does not have to be
computed as soon as an API call is made to ask how much free space there is on the
volume (like at the end of a directory listing). The FSInfo sector number is the value
in the BPB_FSInfo field; for Microsoft operating systems it is always set to 1. Here is
the structure of the FSInfo sector:

FAT32 FSInfo Sector Structure and Backup Boot Sector
Name Offset | Size Description

(byte) (bytes)
0 4

FS_LeadSig Value 0x41615252. This lead signature is used to
validate that this isin fact an FSInfo sector.
FSI_Reservedl 4 480 This field is currently reserved for future expansion.
FAT32 format code should always initialize all bytes of

this field to 0. Bytes in this field must currently never be

used.

FSl_StrucSig 484 4 Vaue 0x61417272. Another signature that is more
localized in the sector to the location of the fields that
are used.

FSI_Free Count 488 4 Contains the last known free cluster count on the

volume. If the value is OxFFFFFFFF, then the free count is
unknown and must be computed. Any other value can be
used, but is not necessarily correct. It should be range
checked at least to make sure it is <= volume cluster
count.

© 2000 Microsoft Corporation. All rights reserved. 23

FAT: General Overview of On- Disk Format—Page 24

FSI_Nxt_Free 492 4 This is a hint for the FAT driver. It indicates the cluster
number at which the driver should start looking for free
clusters. Because a FAT32 FAT is large, it can be rather
time consuming if there are alot of alocated clusters at
the start of the FAT and the driver starts looking for a
free cluster starting at cluster 2. Typically this value is
set to the last cluster number that the driver allocated. If
the value is OxFFFFFFFF, then there is no hint and the
driver should start looking at cluster 2. Any other value
can be used, but should be checked first to make sure it
is avalid cluster number for the volume.

FSI_Reserved2 496 12 This field is currently reserved for future expansion.
FAT32 format code should always initialize all bytes of
this field to 0. Bytes in this field must currently never be
used.

FSI_TrailSig 508 4 Value 0xAA550000. This trail signature is used to
validate that this isin fact an FSInfo sector. Note that the
high 2 bytes of this value—which go into the bytes at
offsets 510 and 511—match the signature bytes used at
the same offsets in sector 0.

Another feature on FAT32 volumes that is not present on FAT16/FAT12 is the
BPB_BkBootSec field. FAT16/FAT12 volumes can be totally lost if the contents of
sector O of the volume are overwritten or sector 0 goes bad and cannot be read. This
is a“single point of failure” for FAT16 and FAT12 volumes. The BPB_BkBootSec field
reduces the severity of this problem for FAT32 volumes, because starting at that
sector number on the volume—6—there is a backup copy of the boot sector
information including the volume's BPB.

In the case where the sector 0 information has been accidentally overwritten, all a
disk repair utility has to do is restore the boot sector(s) from the backup copy. In
the case where sector 0 goes bad, this allows the volume to be mounted so that the
user can access data before replacing the disk.

This second case—sector 0 goes bad—is the reason why no value other than 6
should ever be placed in the BPB_BkBootSec field. If sector O is unreadable, various
operating systems are “hard wired” to check for backup boot sector(s) starting at
sector 6 of the FAT32 volume. Note that starting at the BPB_BkBootSec sector is a
complete boot record. The Microsoft FAT32 “boot sector” is actually three 512- byte
sectors long. There is a copy of al three of these sectors starting at the
BPB_BkBootSec sector. A copy of the FSInfo sector is also there, even though the
BPB_FSInfo field in this backup boot sector is set to the same value as is stored in
the sector O BPB.

NOTE: All 3 of these sectors have the OXAA55 signature in sector offsets 510 and
511, just like the first boot sector does (see the earlier discussion at the end of the
BPB structure description).

FAT Directory Structure
We will first talk about short directory entries and ignore long directory entries for
the moment.

A FAT directory is nothing but a “file” composed of alinear list of 32- byte
structures. The only special directory, which must always be present, is the root
directory. For FAT12 and FAT16 media, the root directory is located in a fixed

© 2000 Microsoft Corporation. All rights reserved. 24

FAT: General Overview of On- Disk Format—Page 25

location on the disk immediately following the last FAT and is of afixed size in
sectors computed from the BPB_RootEntCnt value (see computations for
RootDirSectors earlier in this document). For FAT12 and FAT16 media, the first
sector of the root directory is sector number relative to the first sector of the FAT
volume:

Fi r st Root Di r SecNum = BPB_ResvdSecCnt + (BPB_NunFATs * BPB_FATSz16);

For FAT32, the root directory can be of variable size and is a cluster chain, just like
any other directory is. The first cluster of the root directory on a FAT32 volume is
stored in BPB_RootClus. Unlike other directories, the root directory itself on any
FAT type does not have any date or time stamps, does not have a file name (other
than the implied file name “\"), and does not contain “.” and “..” files as the first two
directory entries in the directory. The only other special aspect of the root directory
is that it is the only directory on the FAT volume for which it is valid to have afile
that has only the ATTR_VOLUME ID attribute bit set (see below).

© 2000 Microsoft Corporation. All rights reserved. 25

FAT: General Overview of On- Disk Format—Page 26

FAT 32 Byte Directory Entry Structure

Name Offset Size Description
(byte) (bytes
)
DIR_Name 0 11 Short name.
DIR_Attr 11 1 File attributes:
ATTR_READ_ONLY 0x01
ATTR_HIDDEN 0x02
ATTR_SYSTEM 0x04
ATTR_VOLUME_ID 0x08
ATTR_DIRECTORY 0x10
ATTR_ARCHIVE 0x20
ATTR_LONG_NAME ATTR_READ_ONLY |
ATTR_HIDDEN |
ATTR_SYSTEM |
ATTR_VOLUME_ID
The upper two bits of the attribute byte are reserved
and should always be set to 0 when afile is created
and never modified or looked at after that.

DIR_NTRes 12 1 Reserved for use by Windows NT. Set value to 0 when
afile is created and never modify or look at it after
that.

DIR_CrtTimeTenth 13 1 Millisecond stamp at file creation time. This field
actually contains a count of tenths of a second. The
granularity of the seconds part of DIR_CrtTime is 2
seconds so this field is a count of tenths of a second
and its valid value range is 0- 199 inclusive.

DIR _CrtTime 14 2 Time file was created.

DIR CrtDate 16 2 Date file was created.

DIR LstAccDate 18 2 Last access date. Note that there is no last access
time, only a date. This is the date of last read or
write. In the case of a write, this should be set to the
same date as DIR_WrtDate.

DIR_FstClusHI 20 2 High word of this entry’s first cluster number (always
0 for a FAT12 or FAT16 volume).

DIR_WrtTime 22 2 Time of last write. Note that file creation is
considered awrite.

DIR_WrtDate 24 2 Date of last write. Note that file creation is
considered a write.

DIR FstClusLO 26 2 Low word of this entry’s first cluster number.

DIR FileSize 28 4 32- bit DWORD holding this file's size in bytes.

DIR_Name|[Q]

Special notes about the first byte (DIR_Name[0]) of a FAT directory entry:

e If DIR_Name[0] == OxES5, then the directory entry is free (there is no file or
directory name in this entry).

© 2000 Microsoft Corporation. All rights reserved.

26

FAT: General Overview of On- Disk Format—Page 27

« If DIR_Name[0] == 0x00, then the directory entry is free (same as for OxE5), and
there are no allocated directory entries after this one (all of the DIR_Name[0]
bytes in all of the entries after this one are also set to 0).

The special 0 value, rather than the OxE5 value, indicates to FAT file system
driver code that the rest of the entries in this directory do not need to be
examined because they are all free.

e If DIR_Name[0] == 0xO05, then the actual file name character for this byte is OXE5.
OXE5 is actually a valid KANJI lead byte value for the character set used in Japan.
The special 0x05 value is used so that this special file name case for Japan can be
handled properly and not cause FAT file system code to think that the entry is
free.

The DIR_Name field is actually broken into two parts+ the 8- character main part of
the name, and the 3- character extension. These two parts are “trailing space
padded” with bytes of 0x20.

DIR_Name[0] may not equal 0x20. There is an implied ‘.’ character between the main
part of the name and the extension part of the name that is not present in
DIR_Name. Lower case characters are not allowed in DIR_Name (what these
characters are is country specific).

The following characters are not legal in any bytes of DIR_Name:

* Values less than 0x20 except for the special case of 0x05 in DIR_Name[0]
described above.

e 0x22, 0x2A, 0x2B, 0x2C, 0x2E, Ox2F, 0x3A, 0x3B, 0x3C, 0x3D, 0x3E, 0x3F, 0x5B,
0x5C, 0x5D, and 0x7C.

Here are some examples of how a user- entered name maps into DIR_Name:

“foo. bar” -> “FOO BAR’

“FOO. BAR' -> “FOO BAR’

“Foo. Bar” -> “FOO BAR’

“f 00" -> “FOO “

“foo.” -> “FOO

“PI CKLE. A" -> “PICKLE A

“prettybg. big” -> “PRETTYBGBI G’

“.big" -> illegal, DIR_Nanme[0] cannot be 0x20

In FAT directories all names are unique. Look at the first three examples earlier.
Those different names all refer to the same file, and there can only be one file with
DIR_Name set to “FOO BAR” in any directory.

DIR_Attr specifies attributes of the file:

ATTR_READ_ONLY Indicates that writes to the file should fail.

ATTR_HIDDEN Indicates that normal directory listings should not show
this file.
ATTR_SYSTEM Indicates that this is an operating system file.

ATTR_VOLUME ID There should only be one “file” on the volume that has
this attribute set, and that file must be in the root
directory. This name of this file is actually the label for
the volume. DIR_FstClusHI and DIR_FstClusLO must

© 2000 Microsoft Corporation. All rights reserved. 27

FAT: General Overview of On- Disk Format—Page 28

always be 0 for the volume label (no data clusters are
allocated to the volume label file).

ATTR_DIRECTORY Indicates that this file is actually a container for other
files.
ATTR_ARCHIVE This attribute supports backup utilities. This bit is set by

the FAT file system driver when afile is created,
renamed, or written to. Backup utilities may use this
attribute to indicate which files on the volume have been
modified since the last time that a backup was
performed.

Note that the ATTR_LONG_NAME attribute bit combination indicates that the “file”
is actually part of the long name entry for some other file. See the next section for
more information on this attribute combination.

When a directory is created, afile with the ATTR_DIRECTORY bit set in its DIR_Attr
field, you set its DIR_FileSize to 0. DIR_FileSize is not used and is aways 0 on afile
with the ATTR_DIRECTORY attribute (directories are sized by simply following their
cluster chains to the EOC mark). One cluster is allocated to the directory (unless it is
the root directory on a FAT16/FAT12 volume), and you set DIR_FstClusLO and
DIR_FstClusHI to that cluster number and place an EOC mark in that clusters entry
in the FAT. Next, you initialize all bytes of that cluster to O. If the directory is the
root directory, you are done (there are no dot or dotdot entries in the root
directory). If the directory is not the root directory, you need to create two special
entries in the first two 32- byte directory entries of the directory (the first two 32
byte entries in the data region of the cluster you just allocated).

The first directory entry has DIR_Name set to:
The second has DIR_Name set to:

These are called the dot and dotdot entries. The DIR_FileSize field on both entries is
set to 0, and all of the date and time fields in both of these entries are set to the
same values as they were in the directory entry for the directory that you just
created. You now set DIR_FstClusLO and DIR_FstClusHI for the dot entry (the first
entry) to the same values you put in those fields for the directories directory entry
(the cluster number of the cluster that contains the dot and dotdot entries).

Finally, you set DIR FstClusLO and DIR_FstClusHI for the dotdot entry (the second
entry) to the first cluster number of the directory in which you just created the
directory (value is O if this directory is the root directory even for FAT32 volumes).

Here is the summary for the dot and dotdot entries:
e« The dot entry is adirectory that points to itself.

« The dotdot entry points to the starting cluster of the parent of this directory
(which is O if this directories parent is the root directory).

Date and Time Formats

Many FAT file systems do not support Date/Time other than DIR_WrtTime and
DIR_WrtDate. For this reason, DIR_CrtTimeMil, DIR_CrtTime, DIR_CrtDate, and

DIR _LstAccDate are actually optional fields. DIR_WrtTime and DIR_WrtDate must be

© 2000 Microsoft Corporation. All rights reserved. 28

FAT: General Overview of On- Disk Format—Page 29

supported, however. If the other date and time fields are not supported, they should
be set to 0 on file create and ignored on other file operations.

Date Format. A FAT directory entry date stamp is a 16- bit field that is basically a
date relative to the MS-DOS epoch of 01/01/1980. Here is the format (bit O is the
LSB of the 16- bit word, bit 15 is the MSB of the 16- bit word):

Bits 0—4: Day of month, valid value range 1- 31 inclusive.

Bits 5-8: Month of year, 1 = January, valid value range 1-12 inclusive.
Bits 9-15: Count of years from 1980, valid value range 0-127 inclusive
(1980-2107).

Time Format. A FAT directory entry time stamp is a 16- bit field that has a
granularity of 2 seconds. Here is the format (bit O is the LSB of the 16- bit word, bit
15 is the MSB of the 16- bit word).

Bits 0—4: 2- second count, valid value range 0-29 inclusive (0 — 58 seconds).
Bits 5-10: Minutes, valid value range 0-59 inclusive.
Bits 11-15: Hours, valid value range 0-23 inclusive.

The valid time range is from Midnight 00:00:00 to 23:59:58.

FAT Long Directory Entries

In adding long directory entries to the FAT file system it was crucial that their
addition to the FAT file system's existing design:

« Beessentially transparent on earlier versions of MS-DOS. The primary goal
being that existing MS-DOS APIs on previous versions of MS-DOS/Windows do
not easily "find" long directory entries. The only MS-DOS APIs that can "find"
long directory entries are the FCB-based- find APIs when used with a full meta-
character matching pattern (i.e. *.*) and full attribute matching bits (i.e.
matching attributes are FFh). On post- Windows 95 versions of MS-
DOS/Windows, no MS-DOS API can accidentally "find" a single long directory
entry.

+ Belocated in close physical proximity, on the media, to the short directory
entries they are associated with. As will be evident, long directory entries are
immediately contiguous to the short directory entry they are associated with
and their existence imposes an unnoticeable performance impact on the file
system.

« If detected by disk maintenance utilities, they do not jeopardize the integrity of
existing file data. Disk maintenance utilities typically do not use MS-DOS APIs
to access on- media file- system- specific data structures. Rather they read
physical or logical sector information from the disk and judge for themselves
what the directory entries contain. Based on the heuristics employed in the
utilities, the utility may take various steps to "repair" what it perceives to be
"damaged" file- system- specific data structures. Long directory entries were
added to the FAT file system in such away as to not cause the loss of file data if
a disk containing long directory entries was "repaired” by a pre- Windows 95-
compatible disk utility on a previous version of MS-DOS/Windows.

© 2000 Microsoft Corporation. All rights reserved. 29

FAT: General Overview of On- Disk Format—Page 30

In order to meet the goals of locality- of- access and transparency, the long directory
entry is defined as a short directory entry with a special attribute. As described
previously, along directory entry isjust aregular directory entry in which the
attribute field has a value of:

ATTR_LONG_NAME ATTR_READ_ONLY |
ATTR_HIDDEN |
ATTR_SYSTEM |
ATTR_VOLUME_ID

A mask for determining whether an entry is along- name sub- component should
also be defined:

ATTR_LONG_NAME MASK ATTR_READ_ONLY |
ATTR_HIDDEN |
ATTR_SYSTEM |
ATTR_VOLUME_ID |
ATTR_DIRECTORY |
ATTR_ARCHIVE

When such a directory entry is encountered it is given special treatment by the file
system. It istreated as part of a set of directory entries that are associated with a
single short directory entry. Each long directory entry has the following structure:

FAT Long Directory Entry Structure

Name Offset | Size Description
(byte) (bytes)
LDIR_Ord 0 1 The order of this entry in the sequence of long dir

entries associated with the short dir entry at the end
of the long dir set.

If masked with 0x40 (LAST_LONG_ENTRY), this
indicates the entry is the last long dir entry in a set of
long dir entries. All valid sets of long dir entries must
begin with an entry having this mask.

LDIR_Namel 1 10 Characters 1-5 of the long- name sub- component in
this dir entry.

LDIR Attr 11 Attributes - must be ATTR LONG NAME

[EEN

LDIR Type 12 1 If zero, indicates a directory entry that is a sub-
component of along name. NOTE: Other values
reserved for future extensions.

Non- zero implies other dirent types.

LDIR_Chksum 13 1 Checksum of name in the short dir entry at the end of
the long dir set.

LDIR_Name2 14 12 Characters 6- 11 of the long- name sub- component in
this dir entry.

LDIR FstClusLO 26 2 Must be ZERO. This is an artifact of the FAT "first

cluster" and must be zero for compatibility with
existing disk utilities. It's meaningless in the context
of along dir entry.

LDIR_Name3 28 4 Characters 12- 13 of the long- name sub- component in
this dir entry.

Organization and Association of Short & Long Directory Entries

© 2000 Microsoft Corporation. All rights reserved. 30

FAT: General Overview of On- Disk Format—Page 31

A set of long entries is always associated with a short entry that they always
immediately precede. Long entries are paired with short entries for one reason:
only short directory entries are visible to previous versions of MS-DOS/Windows.
Without a short entry to accompany it, a long directory entry would be completely
invisible on previous versions of MS-DOS/Windows. A long entry never legally
exists all by itself. If long entries are found without being paired with a valid short
entry, they are termed orphans. The following figure depicts a set of n long
directory entries associated with it's single short entry.

Long entries always immediately precede and are physically contiguous with, the
short entry they are associated with. The file system makes a few other checks to
ensure that a set of long entries is actually associated with a short entry.

Sequence Of Long Directory Entries

Entry Ordinal

Nth Long entry LAST _LONG_ENTRY (0x40) | N
... Additional Long Entries

1% Long entry 1

Short Entry Associated With Preceding Long Entries (not applicable)

First, every member of a set of long entries is uniquely numbered and the last
member of the set is or'd with aflag indicating that it is, in fact, the last member of
the set. The LDIR_Ord field is used to make this determination. The first member
of aset has an LDIR_Ord value of one. The nth long member of the set has a value
of (n OR LAST_LONG_ENTRY). Note that the LDIR _Ord field cannot have values of
OXE5 or 0x00. These values have always been used by the file system to indicate a
"free" directory entry, or the "last" directory entry in a cluster. Values for LDIR_Ord
do not take on these two values over their range. Vaues for LDIR_Ord must run
from 1to (n OR LAST_LONG_ENTRY). If they do not, the long entries are "damaged"
and are treated as orphans by the file system.

Second, an 8- bit checksum is computed on the name contained in the short
directory entry at the time the short and long directory entries are created. All 11
characters of the name in the short entry are used in the checksum calculation. The
check sum is placed in every long entry. If any of the check sums in the set of long
entries do not agree with the computed checksum of the name contained in the
short entry, then the long entries are treated as orphans. This can occur if a disk
containing long and short entries is taken to a previous version of MS-
DOS/Windows and only the short name of afile or directory with along entries is
renamed.

The algorithm, implemented in C, for computing the checksum is:

© 2000 Microsoft Corporation. All rights reserved. 31

FAT: General Overview of On- Disk Format—Page 32

/1 ChkSum()
/1 Ret urns an unsi gned byte checksum conput ed on an unsigned byte
/1 array. The array must be 11 bytes long and is assuned to contain
/1 a nanme stored in the format of a M5-DOS directory entry.
/1 Passed: pFcbNane Pointer to an unsigned byte array assuned to be
/1 11 bytes |ong.
/1 Returns: Sum An 8-bit unsigned checksum of the array pointed
/1 to by pFcbNane.
N e
unsi gned char ChkSum (unsi gned char *pFcbNane)
{

short FcbNanelLen;

unsi gned char Sum

Sum = 0;

for (FcbNameLen=11; FcbNaneLen!=0; FcbNaneLen--) {

/1 NOTE: The operation is an unsigned char rotate right
Sum= ((Sum & 1) ? 0x80 : 0) + (Sum>> 1) + *pFcbName++;

}

return (Sum;
}

As a consequence of this pairing, the short directory entry serves as the structure
that contains fields like: last access date, creation time, creation date, first cluster,
and size. It also holds a name that is visible on previous versions of MS-
DOS/Windows. The long directory entries are free to contain new information and
need not replicate information already available in the short entry. Principally, the
long entries contain the long name of afile. The name contained in a short entry
which is associated with a set of long entries is termed the alias name, or simply
alias, of the file.

Storage of a Long- Name Within Long Directory Entries

A long name can consist of more characters than can fit in a single long directory
entry. When this occurs the name is stored in more than one long entry. In any
event, the name fields themselves within the long entries are disjoint. The
following example is provided to illustrate how along name is stored across several
long directory entries. Names are also NUL terminated and padded with OxFFFF
characters in order to detect corruption of long name fields by errant disk utilities.
A name that fits exactly in an long directory entries (i.e. is an integer multiple of
13) is not NUL terminated and not padded with OxFFFFs.

Suppose afile is created with the name: "The quick brown.fox". The following

example illustrates how the name is packed into long and short directory entries.
Most fields in the directory entries are also filled in as well.

© 2000 Microsoft Corporation. All rights reserved. 32

FAT: General Overview of On- Disk Format—Page 33

2dlagaty => | n w n £ o o | an 19 x
. aum
(adlast) r 1 r L r 1 . 1
aooth A FFFFh A FFFh aooch AFFh FFh
1 1 1 1
1 1 1 1 dHe
it logeatry -] T . h o . o oo | u
1 1 1 1
i c k b oooth r o
1 1 1 1
]]]]]]]]]
Sotery =>|T H E Q U I ~ 1 F O X |zn|NT|Rd Cﬁ?
1 1 1 1 1
Last Last Last
Qeted |) e oooh | Modfied | Madified Arst FileSze
Dete Dete Tine Date Auster

The heuristics used to "auto- generate" a short name from along name are
explained in a later section.

Name Limits and Character Sets

Short Directory Entries

Short names are limited to 8 characters followed by an optional period (.) and
extension of up to 3 characters. The total path length of a short name cannot
exceed 80 characters (64 char path + 3 drive letter + 12 for 8.3 name + NUL)
including the trailing NUL. The characters may be any combination of letters, digits,
or characters with code point values greater than 127. The following special
characters are also allowed:

$ %' - _ @~ ! (){}I"#&
Names are stored in a short directory entry in the OEM code page that the system is
configured for at the time the directory entry is created. Short directory entries
remain in OEM for compatibility with previous versions of MS-DOS/Windows. OEM
characters are single 8- bit characters or can be DBCS character pairs for certain
code pages.

Short names passed to the file system are always converted to upper case and their
original case value islost. One problem that is generally true of most OEM code
pages is that they map lower to upper case extended characters in a non- unique
fashion. That is, they map multiple extended characters to a single upper case
character. This creates problems because it does not preserve the information that
the extended character provides. This mapping also prevents the creation of some
file names that would normally differ, but because of the mapping to upper case
they become the same file name.

Long Directory Entries

Long names are limited to 255 characters, not including the trailing NUL. The total
path length of along name cannot exceed 260 characters, including the trailing
NUL. The characters may be any combination of those defined for short names with
the addition of the period (.) character used multiple times within the long name. A
space is also avalid character in along name as it always has been for a short name.

© 2000 Microsoft Corporation. All rights reserved. 33

FAT: General Overview of On- Disk Format—Page 34

However, in short names it typically is not used. The following six special
characters are now allowed in along name. They are not legal in a short name.

+ 5 =[]

Embedded spaces within along name are allowed. Leading and trailing spaces in a
long name are ignored.

Leading and embedded periods are allowed in a name and are stored in the long
name. Trailing periods are ignored.

Long names are stored in long directory entries in UNICODE. UNICODE characters
are 16- bit characters. It is not be possible to store UNICODE in short directory
entries since the names stored there are 8- bit characters or DBCS characters.

Long names passed to the file system are not converted to upper case and their
original case value is preserved. UNICODE solves the case mapping problem
prevalent in some OEM code pages by always providing a translation for lower case
characters to a single, unigue upper case character.

Name Matching In Short & Long Names

The names contained in the set of all short directory entries are termed the "short
name space". The names contained in the set of all long directory entries are
termed the "long name space". Together, they form a single unified name space in
which no duplicate names can exist. That is: any name within a specific directory,
whether it is a short name or along name, can occur only once in the name space.
Furthermore, although the case of a name is preserved in along name, no two
names can have the same name although the names on the media actually differ by
case. That is names like "foobar" cannot be created if there is already a short entry
with a name of "FOOBAR" or a long name with a name of "FooBar".

All types of search operations within the file system (i.e. find, open, create, delete,
rename) are case- insensitive. An open of "FOOBAR" will open either "FooBar" or
"foobar” if one or the other exists. A find using "FOOBAR" as a pattern will find the
same files mentioned. The same rules are also true for extended characters that are
accented.

A short name search operation checks only the names of the short directory entries
for a match. A long name search operation checks both the long and short
directory entries. As the file system traverses a directory, it caches the long- name
sub- components contained in long directory entries. As soon as a short directory
entry is encountered that is associated with the cached long name, the long name
search operation will check the cached long name first and then the short name for
a match.

When a character on the media, whether it is stored in the OEM character set or in
UNICODE, cannot be translated into the appropriate character in the OEM or ANSI
code page, it is always "translated" to the " " (underscore) character as it is returned

to the user —it is NOT modified on the disk. This character is the same in all OEM
code pages and ANSI.

© 2000 Microsoft Corporation. All rights reserved. 34

FAT: General Overview of On- Disk Format—Page 35

Naming Conventions and Long Names

An APl allows the caller to specify the long name to be assigned to afile or
directory. They do not allow the caller to independently specify the short name.
The reason for this prohibition is that the short and long names are considered to
be a single unified name space. As should be obvious the file system's name space
does not support duplicate names. In other words, along name for afile may not
contain the same name, ignoring case, as the short name in a different file. This
restriction is intended to prevent confusion among users, and applications,
regarding the proper name of afile or directory. To make this restriction
transparent, whenever along name is created and the no matching long name
exists, the short name is automatically generated from the long name in such a way
that it does not collide with an existing short name.

The technique chosen to auto- generate short names from long names is modeled
after Windows NT. Auto- generated short names are composed of the basis- name
and an optional numeric- tail.

The Basis- Name Generation Algorithm

The basis- name generation algorithm is outlined below. This is a sample algorithm
and serves to illustrate how short names can be auto- generated from long names.
An implementation should follow this basic sequence of steps.

1. The UNICODE name passed to the file system is converted to upper case.

2. The upper cased UNICODE name is converted to OEM.
if (the uppercased UNICODE glyph does not exist as an OEM glyph in the OEM
code page)
or (the OEM glyph isinvalid in an 8.3 name)

{
Replace the glyph to an OEM ' ' (underscore) character.
Set a "lossy conversion” flag.
}
3. Strip al leading and embedded spaces from the long name.
4, Strip al leading periods from the long name.

5. While (not at end of the long name)
and (char is not a period)
and (total chars copied < 8)
{

}

6. Insert a dot at the end of the primary components of the basis- name iff the basis
name has an extension after the last period in the name.

Copy characters into primary portion of the basis name

7. Scan for the last embedded period in the long name.
If (the last embedded period was found)

{
While (not at end of the long name)
and (total chars copied < 3)

© 2000 Microsoft Corporation. All rights reserved. 35

FAT: General Overview of On- Disk Format—Page 36

{

}
}

Proceed to numeric- tail generation.

Copy characters into extension portion of the basis name

The Numeric- Tail Generation Algorithm

If (a"lossy conversion" was not flagged)
and (the long name fits within the 8.3 naming conventions)
and (the basis- name does not collide with any existing short name)

{

The short name is only the basis- name without the numeric tail.

}

else

{

Insert a numeric- tail "~n" to the end of the primary name such that the value of
the "~n" is chosen so that the

name thus formed does not collide with any existing short name and that the
primary name does not exceed eight characters in length.

}

The "~n" string can range from "~1" to "~999999". The number "n" is chosen so
that it is the next number in a sequence of files with similar basis- names. For
example, assume the following short names existed: LETTER~1.DOC and
LETTER~2.DOC. As expected, the next auto- generated name of name of this type
would be LETTER~3.DOC. Assume the following short names existed:
LETTER~1.DOC, LETTER~3.DOC. Again, the next auto- generated name of name of
this type would be LETTER~2.DOC. However, one absolutely cannot count on this
behavior. In adirectory with avery large mix of names of this type, the selection
algorithm is optimized for speed and may select another "n" based on the
characteristics of short names that end in "~n" and have similar leading name
patterns.

Effect of Long Directory Entries on Down Level Versions of FAT

The support of long names is most important on the hard disk, however it will be
supported on removable media as well. The implementation provides support for
long names without breaking compatibility with the existing FAT format. A disk
can be read by a down level system without any compatibility problems. An
existing disk does not go through a conversion process before it can start using
long names. All of the current files remain unmodified. The long name directory
entries are added when along name is created. The addition of along name to an
existing file may require the 8.3 directory entry to be moved if the required adjacent
directory entries are not available.

The long name entries are as hidden as hidden or system files are on a down level
system. This is enough to keep the casual user from causing problems. The user
can copy the files off using the 8.3 name, and put new files on without any side
effects

The interesting part of this is what happens when the disk is taken to a down level
FAT system and the directory is changed. This can affect the long name entries

© 2000 Microsoft Corporation. All rights reserved. 36

FAT: General Overview of On- Disk Format—Page 37

since the down level system ignores these long names and will not ensure they are
properly associated with the 8.3 names.

A down level system will only see the long name entries when searching for a label.
On adown level system, the volume label will be incorrectly reported if the true
volume label does not come before all of the long name entries in the root directory.
This is because the long name entries also have the volume label bit set. This is
unfortunate, but is not a critical problem.

If an attempt is made to remove the volume label, one of the long name directory
entries may be deleted. This would be arare occurrence. Itis easily detected on an
aware system. The long name entry will no longer be avalid file entry, since one or
more of the long entries is marked as deleted. If the deleted entry is reused, then
the attribute byte will not have the proper value for along name entry.

If afile isrenamed on a down level system, then only the short name will be
renamed. The long name will not be affected. Since the long and short names must
be kept consistent across the name space, it is desirable to have the long name
become invalid as a result of this rename. The checksum of the 8.3 name that is
kept in the long name directory provides the ability to detect this type of change.
This checksum will be checked to validate the long name before it is used. Rename
will cause problems only if the renamed 8.3 file name happens to have the same
checksum. The checksum agorithm chosen has a relatively flat distribution across
the short name space.

This rename of the 8.3 name must also not conflict with any of the long names.
Otherwise a down level system could create a short name in one file that matches a
long name, when case is ignored, in adifferent file. To prevent this, the automatic
creation of an 8.3 name from along name, that has an 8.3 format, will directly map
the long name to the 8.3 name by converting the characters to upper case.

If the file is deleted, then the long name is simply orphaned. If anew file is created,
the long name may be incorrectly associated with the new file name. Asin the case
of arename the checksum of the 8.3 name will help prevent this incorrect
association.

Validating The Contents of a Directory

These guidelines are provided so that disk maintenance utilities can verify
individual directory entries for 'correctness' while maintaining compatibility with
future enhancements to the directory structure.

1. DO NOT look at the content of directory entry fields marked 'reserved' and
assume that, if they are any value other than zero, that they are 'bad'.

2. DO NOT reset the content of directory entry fields marked reserved to zero
when they contain non- zero values (under the assumption that they are "bad").
Directory entry fields are designated reserved, rather than must- be- zero. They
should be ignored by your application.. These fields are intended for future
extensions of the file system. By ignoring them an utility can continue to run on
future versions of the operating system.

3. DO use the A_LONG attribute first when determining whether a directory entry
is along directory entry or ashort directory entry. The following algorithm is
the correct algorithm for making this determination:

© 2000 Microsoft Corporation. All rights reserved. 37

FAT: General Overview of On- Disk Format—Page 38

if ((LDIR attr & ATTR_LONG_NAME_MASK) == ATTR_LONG_NAME) && (LDIR_Ord != OXE5))

[* Found an active long name sub- component. */

}

4. DO use bits 4 and 3 of a short entry together when determining what type of
short directory entry is being inspected. The following algorithm is the correct
algorithm for making this determination:

if ((LDIR attr & ATTR_LONG_NAME MASK) != ATTR_LONG_NAME) && (LDIR_Ord != OXE5))

if ((DIR_Attr & (ATTR_DIRECTORY | ATTR_VOLUME ID)) == 0x00)
[* Found afile. */

else if (DIR_Attr & (ATTR_DIRECTORY | ATTR_VOLUME_ID)) == ATTR_DIRECTORY)
/* Found adirectory. */

else if (DIR_Attr & (ATTR_DIRECTORY | ATTR_VOLUME_ID)) == ATTR_VOLUME_ID)
/* Found avolume label. */

else
[* Found an invalid directory entry. */

}

5. DO NOT assume that a non- zero value in the "type" field indicates a bad
directory entry. Do not force the "type" field to zero.

6. Use the "checksum" field as a value to validate the directory entry. The "first
cluster” field is currently being set to zero, though this might change in future.

Other Notes Relating to FAT Directories

* Long File Name directory entries are identical on all FAT types. See the
preceeding sections for details.

» DIR FileSize is a 32- bit field. For FAT32 volumes, your FAT file system driver
must not allow a cluster chain to be created that is longer than 0x100000000
bytes, and the last byte of the last cluster in a chain that long cannot be allocated
to the file. This must be done so that no file has a file size > OxFFFFFFFF bytes.
This is a fundamental limit of all FAT file systems. The maximum allowed file
size on a FAT volume is OxFFFFFFFF (4,294,967,295) bytes.

e Similarly, a FAT file system driver must not allow a directory (afile that is
actually a container for other files) to be larger than 65,536 * 32 (2,097,152)
bytes.

NOTE: This limit does not apply to the number of files in the directory. This limit
is on the size of the directory itself and has nothing to do with the content of the
directory. There are two reasons for this limit:

1. Because FAT directories are not sorted or indexed, it is a bad idea to create
huge directories; otherwise, operations like creating a new entry (which
requires every allocated directory entry to be checked to verify that the name
doesn’'t already exist in the directory) become very slow.

2. There are many FAT file system drivers and disk utilities, including
Microsoft’'s, that expect to be able to count the entries in a directory using a
16- bit WORD variable. For this reason, directories cannot have more than 16-
bits worth of entries.

© 2000 Microsoft Corporation. All rights reserved. 38

FAT: General Overview of On- Disk Format—Page 39

© 2000 Microsoft Corporation. All rights reserved. 39

