

LLVM	Essentials

Table	of	Contents

LLVM	Essentials

Credits

About	the	Authors

About	the	Reviewer

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and	more

Why	subscribe?

Free	access	for	Packt	account	holders

Preface

What	this	book	covers

What	you	need	for	this	book

Who	this	book	is	for

Conventions

Reader	feedback

Customer	support

Downloading	the	example	code

Errata

Piracy

Questions

1.	Playing	with	LLVM

Modular	design	and	collection	of	libraries

Getting	familiar	with	LLVM	IR

LLVM	tools	and	using	them	in	the	command	line

Summary

2.	Building	LLVM	IR

Creating	an	LLVM	module

Emitting	a	function	in	a	module

Adding	a	block	to	a	function

Emitting	a	global	variable

Emitting	a	return	statement

Emitting	function	arguments

Emitting	a	simple	arithmetic	statement	in	a	basic	block

Emitting	if-else	condition	IR

Emitting	LLVM	IR	for	loop

Summary

3.	Advanced	LLVM	IR

Memory	access	operations

Getting	the	address	of	an	element

Reading	from	the	memory

Writing	into	a	memory	location

Inserting	a	scalar	into	a	vector

Extracting	a	scalar	from	a	vector

Summary

4.	Basic	IR	Transformations

Opt	Tool

Pass	and	Pass	Manager

Using	other	Pass	info	in	current	Pass

AnalysisUsage::addRequired<>	method

AnalysisUsage:addRequiredTransitive<>	method

AnalysisUsage::addPreserved<>	method

Instruction	simplification	example

Instruction	Combining

Summary

5.	Advanced	IR	Block	Transformations

Loop	processing

Scalar	evolution

LLVM	intrinsics

Vectorization

Summary

6.	IR	to	Selection	DAG	phase

Converting	IR	to	selectionDAG

Legalizing	SelectionDAG

Optimizing	SelectionDAG

Instruction	Selection

Scheduling	and	emitting	machine	instructions

Register	allocation

Code	Emission

Summary

7.	Generating	Code	for	Target	Architecture

Sample	backend

Defining	registers	and	register	sets

Defining	the	calling	convention

Defining	the	instruction	set

Implementing	frame	lowering

Lowering	instructions

Printing	an	instruction

Summary

Index

LLVM	Essentials

LLVM	Essentials
Copyright	©	2015	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,
or	transmitted	in	any	form	or	by	any	means,	without	the	prior	written	permission	of	the
publisher,	except	in	the	case	of	brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the
information	presented.	However,	the	information	contained	in	this	book	is	sold	without
warranty,	either	express	or	implied.	Neither	the	authors,	nor	Packt	Publishing,	and	its
dealers	and	distributors	will	be	held	liable	for	any	damages	caused	or	alleged	to	be	caused
directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the
companies	and	products	mentioned	in	this	book	by	the	appropriate	use	of	capitals.
However,	Packt	Publishing	cannot	guarantee	the	accuracy	of	this	information.

First	published:	December	2015

Production	reference:	1021215

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham	B3	2PB,	UK.

ISBN	978-1-78528-080-1

www.packtpub.com

http://www.packtpub.com

Credits
Authors

Suyog	Sarda

Mayur	Pandey

Reviewer

Renato	Golin

Commissioning	Editor

Nadeem	Bagban

Acquisition	Editor

Harsha	Bharwani

Content	Development	Editor

Priyanka	Mehta

Technical	Editor

Ryan	Kochery

Copy	Editor

Imon	Biswas

Project	Coordinator

Izzat	Contractor

Proofreader

Safis	Editing

Indexer

Tejal	Daruwale	Soni

Production	Coordinator

Aparna	Bhagat

Cover	Work

Aparna	Bhagat

About	the	Authors
Suyog	Sarda	is	a	professional	software	engineer	and	an	open	source	enthusiast.	He
focuses	on	compiler	development	and	compiler	tools.	He	is	an	active	contributor	to	the
LLVM	open	source	community.	Suyog	was	also	involved	in	code	performance
improvements	for	the	ARM	and	X86	architectures.	He	has	been	a	part	of	the	compiler
team	for	the	Tizen	project.	His	interest	in	compiler	development	lies	more	in	code
optimization	and	vectorization.

Previously,	he	has	authored	a	book	on	LLVM,	titled	LLVM	Cookbook	by	Packt	Publishing.

Apart	from	compilers,	Suyog	is	also	interested	in	Linux	Kernel	Development.	He	has
published	a	technical	paper	titled	Secure	Co-resident	Virtualization	in	Multicore	Systems
by	VM	Pinning	and	Page	Coloring	at	the	IEEE	Proceedings	of	the	2012	International
Conference	on	Cloud	Computing,	Technologies,	Applications,	and	Management	at	the
Birla	Institute	of	Technology,	Dubai.	He	has	earned	a	bachelor’s	degree	in	computer
technology	from	the	College	of	Engineering,	Pune,	India.

I	would	like	to	thank	my	family	and	friends	for	encouraging	me	to	write	this	book.	I	am
thankful	to	my	co-author	and	reviewers	who	did	a	tremendous	job	of	refining	the	contents.
I	would	also	like	to	thank	the	LLVM	open	source	community	for	always	being	helpful.	It
has	been	a	great	experience	to	interact	with	the	community.	It	is	amazing	to	see	how	fast
LLVM	has	evolved.

Mayur	Pandey	is	a	professional	software	engineer	and	open	source	enthusiast	focused	on
compiler	development	and	tools.	He	is	an	active	contributor	to	the	LLVM	open	source
community.	He	has	been	a	part	of	the	compiler	team	for	the	Tizen	project	and	has	hands-
on	experience	of	other	proprietary	compilers.

He	has	earned	a	bachelor’s	degree	in	Information	Technology	from	Motilal	Nehru
National	Institute	of	Technology,	Allahabad,	India.	Currently,	he	lives	in	Bengaluru,	India.

I	would	like	to	thank	my	family	and	friends	who	made	it	possible	for	me	to	complete	the
book	by	taking	care	of	my	other	commitments,	and	who	have	always	being	encouraging.

About	the	Reviewer
Renato	Golin	has	worked	with	toolchains	since	2008,	developing	debuggers	and
compilers	for	multiple	languages	and	platforms,	and	has	also	been	LLVM	Tech	Lead	at
ARM	and	Linaro,	focusing	on	code	generation,	correctness,	performance,	and	providing	a
complete	toolchain	solution	based	on	LLVM	for	the	diverse	ARM	platforms.

Before	that,	he	spent	a	decade	moving	between	web	back-ends,	databases,	distributed
systems,	big	data	and	bioinformatics,	always	working	on	and	with	open	source	projects.

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and
more
For	support	files	and	downloads	related	to	your	book,	please	visit	www.PacktPub.com.

Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with	PDF	and
ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.PacktPub.com	and	as
a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook	copy.	Get	in	touch	with
us	at	<service@packtpub.com>	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up
for	a	range	of	free	newsletters	and	receive	exclusive	discounts	and	offers	on	Packt	books
and	eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do	you	need	instant	solutions	to	your	IT	questions?	PacktLib	is	Packt’s	online	digital
book	library.	Here,	you	can	search,	access,	and	read	Packt’s	entire	library	of	books.

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

Why	subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print,	and	bookmark	content
On	demand	and	accessible	via	a	web	browser

Free	access	for	Packt	account	holders
If	you	have	an	account	with	Packt	at	www.PacktPub.com,	you	can	use	this	to	access
PacktLib	today	and	view	9	entirely	free	books.	Simply	use	your	login	credentials	for
immediate	access.

http://www.PacktPub.com

Preface
LLVM	is	one	of	the	very	hot	topics	in	recent	times.	It	is	an	open	source	project	with	an
ever-increasing	number	of	contributors.	Every	programmer	comes	across	a	compiler	at
some	point	or	the	other	while	programming.	Simply	speaking,	a	compiler	converts	a	high-
level	language	to	machine-executable	code.	However,	what	goes	on	under	the	hood	is	a	lot
of	complex	algorithms	at	work.	So,	to	get	started	with	compiler,	LLVM	will	be	the
simplest	infrastructure	to	study.	Written	in	object-oriented	C++,	modular	in	design,	and
with	concepts	that	are	very	easy	to	map	to	theory,	LLVM	proves	to	be	attractive	for
experienced	compiler	programmers	and	for	novice	students	who	are	willing	to	learn.

As	authors,	we	maintain	that	simple	solutions	frequently	work	better	and	are	easier	to
grasp	than	complex	solutions.	Throughout	the	book	we	will	look	at	various	topics	that	will
help	you	enhance	your	skills	and	drive	you	to	learn	more.

We	also	believe	that	this	book	will	be	helpful	for	people	not	directly	involved	in	compiler
development	as	knowledge	of	compiler	development	will	help	them	write	code	optimally.

What	this	book	covers
Chapter	1,	Playing	with	LLVM,	introduces	you	to	the	modular	design	of	LLVM	and
LLVM	Intermediate	Representation.	In	this	chapter,	we	also	look	into	some	of	the	tools
that	LLVM	provides.

Chapter	2,	Building	LLVM	IR,	introduces	you	to	some	basic	function	calls	provided	by	the
LLVM	infrastructure	to	build	LLVM	IR.	This	chapter	demonstrates	building	of	modules,
functions,	basic	blocks,	condition	statements,	and	loops	using	LLVM	APIs.

Chapter	3,	Advanced	LLVM	IR,	introduces	you	to	some	advanced	IR	paradigms.	This
chapter	explains	advanced	IR	to	the	readers	and	shows	how	LLVM	function	calls	can	be
used	to	emit	them	in	the	IR.

Chapter	4,	Basic	IR	Transformations,	deals	with	basic	transformation	optimizations	at	the
IR	level	using	the	LLVM	optimizer	tool	opt	and	the	LLVM	Pass	infrastructure.	You	will
learn	how	to	use	the	information	of	one	pass	in	another	and	then	look	into	Instruction
Simplification	and	Instruction	Combining	Passes.

Chapter	5,	Advanced	IR	Block	Transformations,	deals	with	optimizations	at	block	level	on
IR.	We	will	discuss	various	optimizations	such	as	Loop	Optimizations,	Scalar	Evolution,
Vectorization,	and	so	on,	followed	by	the	summary	of	this	chapter.

Chapter	6,	IR	to	Selection	DAG	phase,	takes	you	on	a	journey	through	the	abstract
infrastructure	of	a	target-independent	code	generator.	We	explore	how	LLVM	IR	is
converted	to	Selection	DAG	and	various	phases	thereafter.	It	also	introduces	you	to
instruction	selection,	scheduling,	register	allocation,	and	so	on.

Chapter	7,	Generating	Code	for	Target	Architecture,	introduces	the	readers	to	the	tablegen
concept.	It	shows	how	target	architecture	specifications	such	as	register	sets,	instruction
sets,	calling	conventions,	and	so	on	can	be	represented	using	tablegen,	and	how	the	output
of	tablegen	can	be	used	to	emit	code	for	a	given	architecture.	This	chapter	can	be	used	by
readers	as	a	reference	for	bootstrapping	a	target	machine	code	generator.

What	you	need	for	this	book
All	you	need	to	work	through	most	of	the	examples	covered	in	this	book	is	a	Linux
machine,	preferably	Ubuntu.	You	will	also	need	a	simple	text	or	code	editor,	Internet
access,	and	a	browser.	We	recommend	installing	the	meld	tool	to	compare	two	files;	it
works	well	on	the	Linux	platform.

Who	this	book	is	for
This	book	is	intended	for	those	who	already	know	some	of	the	concepts	concerning
compilers	and	want	to	quickly	become	familiar	with	LLVM’s	infrastructure	and	the	rich
set	of	libraries	that	it	provides.	Compiler	programmers,	who	are	familiar	with	concepts	of
compilers	and	want	to	indulge	in	understanding,	exploring,	and	using	the	LLVM
infrastructure	in	a	meaningful	way	in	their	work,	will	find	this	book	useful.

This	book	is	also	for	programmers	who	are	not	directly	involved	in	compiler	projects	but
are	often	involved	in	development	phases	where	they	write	thousands	of	lines	of	code.
With	knowledge	of	how	compilers	work,	they	will	be	able	to	code	in	an	optimal	way	and
improve	performance	with	clean	code.

Conventions
In	this	book,	you	will	find	a	number	of	text	styles	that	distinguish	between	different	kinds
of	information.	Here	are	some	examples	of	these	styles	and	an	explanation	of	their
meaning.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file	extensions,
pathnames,	dummy	URLs,	user	input,	and	Twitter	handles	are	shown	as	follows:	“The
LLVM	Pass	Manager	uses	the	explicitly	mentioned	dependency	information.”

A	block	of	code	is	set	as	follows:

int	add(int	a)	{

return	globvar	+	a;

}

When	we	wish	to	draw	your	attention	to	a	particular	part	of	a	code	block,	the	relevant
lines	or	items	are	set	in	bold:

		Value	*StartVal	=	Builder.getInt32(1);

		Value	*Res	=	createLoop(Builder,	List,	VL,	StartVal,	Arg2);

		Builder.CreateRet(Res);

Any	command-line	input	or	output	is	written	as	follows:

$	clang	-emit-llvm	-c	-S	add.c

$	cat	add.ll

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	screen,
for	example,	in	menus	or	dialog	boxes,	appear	in	the	text	like	this:	“Clicking	the	Next
button	moves	you	to	the	next	screen.”

Note
Warnings	or	important	notes	appear	in	a	box	like	this.

Tip
Tips	and	tricks	appear	like	this.

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this
book—what	you	liked	or	disliked.	Reader	feedback	is	important	for	us	as	it	helps	us
develop	titles	that	you	will	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	e-mail	<feedback@packtpub.com>,	and	mention	the
book’s	title	in	the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or
contributing	to	a	book,	see	our	author	guide	at	www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help
you	to	get	the	most	from	your	purchase.

Downloading	the	example	code
You	can	download	the	example	code	files	from	your	account	at	http://www.packtpub.com
for	all	the	Packt	Publishing	books	you	have	purchased.	If	you	purchased	this	book
elsewhere,	you	can	visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-
mailed	directly	to	you.

http://www.packtpub.com
http://www.packtpub.com/support

Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do
happen.	If	you	find	a	mistake	in	one	of	our	books—maybe	a	mistake	in	the	text	or	the
code—we	would	be	grateful	if	you	could	report	this	to	us.	By	doing	so,	you	can	save	other
readers	from	frustration	and	help	us	improve	subsequent	versions	of	this	book.	If	you	find
any	errata,	please	report	them	by	visiting	http://www.packtpub.com/submit-errata,
selecting	your	book,	clicking	on	the	Errata	Submission	Form	link,	and	entering	the
details	of	your	errata.	Once	your	errata	are	verified,	your	submission	will	be	accepted	and
the	errata	will	be	uploaded	to	our	website	or	added	to	any	list	of	existing	errata	under	the
Errata	section	of	that	title.

To	view	the	previously	submitted	errata,	go	to
https://www.packtpub.com/books/content/support	and	enter	the	name	of	the	book	in	the
search	field.	The	required	information	will	appear	under	the	Errata	section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy
Piracy	of	copyrighted	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At
Packt,	we	take	the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come
across	any	illegal	copies	of	our	works	in	any	form	on	the	Internet,	please	provide	us	with
the	location	address	or	website	name	immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	<copyright@packtpub.com>	with	a	link	to	the	suspected	pirated
material.

We	appreciate	your	help	in	protecting	our	authors	and	our	ability	to	bring	you	valuable
content.

mailto:copyright@packtpub.com

Questions
If	you	have	a	problem	with	any	aspect	of	this	book,	you	can	contact	us	at
<questions@packtpub.com>,	and	we	will	do	our	best	to	address	the	problem.

mailto:questions@packtpub.com

Chapter	1.	Playing	with	LLVM
The	LLVM	Compiler	infrastructure	project,	started	in	2000	in	University	of	Illinois,	was
originally	a	research	project	to	provide	modern,	SSA	based	compilation	technique	for
arbitrary	static	and	dynamic	programming	languages.	Now	it	has	grown	to	be	an	umbrella
project	with	many	sub	projects	within	it,	providing	a	set	of	reusable	libraries	having	well
defined	interfaces.

LLVM	is	implemented	in	C++	and	the	main	crux	of	it	is	the	LLVM	core	libraries	it
provides.	These	libraries	provide	us	with	opt	tool,	the	target	independent	optimizer,	and
code	generation	support	for	various	target	architectures.	There	are	other	tools	which	make
use	of	core	libraries,	but	our	main	focus	in	the	book	will	be	related	to	the	three	mentioned
above.	These	are	built	around	LLVM	Intermediate	Representation	(LLVM	IR),	which	can
almost	map	all	the	high-level	languages.	So	basically,	to	use	LLVM’s	optimizer	and	code
generation	technique	for	code	written	in	a	certain	programming	language,	all	we	need	to
do	is	write	a	frontend	for	a	language	that	takes	the	high	level	language	and	generates
LLVM	IR.	There	are	already	many	frontends	available	for	languages	such	as	C,	C++,	Go,
Python,	and	so	on.	We	will	cover	the	following	topics	in	this	chapter:

Modular	design	and	collection	of	libraries
Getting	familiar	with	LLVM	IR
LLVM	Tools	and	using	them	at	command	line

Modular	design	and	collection	of	libraries
The	most	important	thing	about	LLVM	is	that	it	is	designed	as	a	collection	of	libraries.
Let’s	understand	these	by	taking	the	example	of	LLVM	optimizer	opt.	There	are	many
different	optimization	passes	that	the	optimizer	can	run.	Each	of	these	passes	is	written	as
a	C++	class	derived	from	the	Pass	class	of	LLVM.	Each	of	the	written	passes	can	be
compiled	into	a	.o	file	and	subsequently	they	are	archived	into	a	.a	library.	This	library
will	contain	all	the	passes	for	opt	tool.	All	the	passes	in	this	library	are	loosely	coupled,
that	is	they	mention	explicitly	the	dependencies	on	other	passes.

When	the	optimizer	is	ran,	the	LLVM	PassManager	uses	the	explicitly	mentioned
dependency	information	and	runs	the	passes	in	optimal	way.	The	library	based	design
allows	the	implementer	to	choose	the	order	in	which	passes	will	execute	and	also	choose
which	passes	are	to	be	executed	based	on	the	requirements.	Only	the	passes	that	are
required	are	linked	to	the	final	application,	not	the	entire	optimizer.

The	following	figure	demonstrates	how	each	pass	can	be	linked	to	a	specific	object	file
within	a	specific	library.	In	the	following	figure,	the	PassA	references	LLVMPasses.a	for
PassA.o,	whereas	the	custom	pass	refers	to	a	different	library	MyPasses.a	for	the
MyPass.o	object	file.

The	code	generator	also	makes	use	of	this	modular	design	like	the	Optimizer,	for	splitting
the	code	generation	into	individual	passes,	namely,	instruction	selection,	register
allocation,	scheduling,	code	layout	optimization,	and	assembly	emission.

In	each	of	the	following	phases	mentioned	there	are	some	common	things	for	almost	every
target,	such	as	an	algorithm	for	assigning	physical	registers	available	to	virtual	registers
even	though	the	set	of	registers	for	different	targets	vary.	So,	the	compiler	writer	can
modify	each	of	the	passes	mentioned	above	and	create	custom	target-specific	passes.	The
use	of	the	tablegen	tool	helps	in	achieving	this	using	table	description	.td	files	for

specific	architectures.	We	will	discuss	how	this	happens	later	in	the	book.

Another	capability	that	arises	out	of	this	is	the	ability	to	easily	pinpoint	a	bug	to	a
particular	pass	in	the	optimizer.	A	tool	name	Bugpoint	makes	use	of	this	capability	to
automatically	reduce	the	test	case	and	pinpoint	the	pass	that	is	causing	the	bug.

Getting	familiar	with	LLVM	IR
LLVM	Intermediate	Representation	(IR)	is	the	heart	of	the	LLVM	project.	In	general
every	compiler	produces	an	intermediate	representation	on	which	it	runs	most	of	its
optimizations.	For	a	compiler	targeting	multiple-source	languages	and	different
architectures	the	important	decision	while	selecting	an	IR	is	that	it	should	neither	be	of
very	high-level,	as	in	very	closely	attached	to	the	source	language,	nor	it	should	be	very
low-level,	as	in	close	to	the	target	machine	instructions.	LLVM	IR	aims	to	be	a	universal
IR	of	a	kind,	by	being	at	a	low	enough	level	that	high-level	ideas	may	be	cleanly	mapped
to	it.	Ideally	the	LLVM	IR	should	have	been	target-independent,	but	it	is	not	so	because	of
the	inherent	target	dependence	in	some	of	the	programming	languages	itself.	For	example,
when	using	standard	C	headers	in	a	Linux	system,	the	header	files	itself	are	target
dependent,	which	may	specify	a	particular	type	to	an	entity	so	that	it	matches	the	system
calls	of	the	particular	target	architecture.

Most	of	the	LLVM	tools	revolve	around	this	Intermediate	Representation.	The	frontends
of	different	languages	generate	this	IR	from	the	high-level	source	language.	The	optimizer
tool	of	LLVM	runs	on	this	generated	IR	to	optimize	the	code	for	better	performance	and
the	code	generator	makes	use	of	this	IR	for	target	specific	code	generation.	This	IR	has
three	equivalent	forms:

An	in-memory	compiler	IR
An	on-disk	bitcode	representation
A	Human	readable	form	(LLVM	Assembly)

Now	let’s	take	an	example	to	see	how	this	LLVM	IR	looks	like.	We	will	take	a	small	C
code	and	convert	it	into	LLVM	IR	using	clang	and	try	to	understand	the	details	of	LLVM
IR	by	mapping	it	back	to	the	source	language.

$	cat	add.c

int	globvar	=	12;

int	add(int	a)	{

return	globvar	+	a;

}

Use	the	clang	frontend	with	the	following	options	to	convert	it	to	LLVM	IR:

$	clang	-emit-llvm	-c	-S	add.c

$	cat	add.ll

;	ModuleID	=	'add.c'

target	datalayout	=	"e-m:e-i64:64-f80:128-n8:16:32:64-S128"

target	triple	=	"x86_64-unknown-linux-gnu"

@globvar	=	global	i32	12,	align	4

;	Function	Attrs:	nounwind	uwtable

define	i32	@add(i32	%a)	#0	{

		%1	=	alloca	i32,	align	4

		store	i32	%a,	i32*	%1,	align	4

		%2	=	load	i32,	i32*	@globvar,	align	4

		%3	=	load	i32,	i32*	%1,	align	4

		%4	=	add	nsw	i32	%2,	%3

		ret	i32	%4

}

attributes	#0	=	{	nounwind	uwtable	"less-precise-fpmad"="false"	"no-frame-

pointer-elim"="true"	"no-frame-pointer-elim-non-leaf"	"no-infs-fp-

math"="false"	"no-nans-fp-math"="false"	"stack-protector-buffer-size"="8"	

"target-cpu"="x86-64"	"unsafe-fp-math"="false"	"use-soft-float"="false"	}

!llvm.ident	=	!{!0}

Now	let’s	look	at	the	IR	generated	and	see	what	it	is	all	about.	You	can	see	the	very	first
line	giving	the	ModuleID,	that	it	defines	the	LLVM	module	for	add.c	file.	An	LLVM
module	is	a	top–level	data	structure	that	has	the	entire	contents	of	the	input	LLVM	file.	It
consists	of	functions,	global	variables,	external	function	prototypes,	and	symbol	table
entries.

The	following	lines	show	the	target	data	layout	and	target	triple	from	which	we	can	know
that	the	target	is	x86_64	processor	with	Linux	running	on	it.	The	datalayout	string	tells
us	what	is	the	endianess	of	machine	(‘e‘	meaning	little	endian),	and	the	name	mangling	(m
:	e	denotes	elf	type).	Each	specification	is	separated	by	‘–‘and	each	following	spec	gives
information	about	the	type	and	size	of	that	type.	For	example,	i64:64	says	64	bit	integer	is
of	64	bits.

Then	we	have	a	global	variable	globvar.	In	LLVM	IR	all	globals	start	with	‘@‘	and	all
local	variables	start	with	‘%‘.	There	are	two	main	reasons	why	the	variables	are	prefixed
with	these	symbols.	The	first	one	being,	the	compiler	won’t	have	to	bother	about	a	name
clash	with	reserved	words,	the	other	being	that	the	compiler	can	come	up	quickly	with	a
temporary	name	without	having	to	worry	about	a	conflict	with	symbol	table	conflicts.	This
second	property	is	useful	for	representing	the	IR	in	static	single	assignment	(SSA)	from
where	each	variable	is	assigned	only	a	single	time	and	every	use	of	a	variable	is	preceded
by	its	definition.	So,	while	converting	a	normal	program	to	SSA	form,	we	create	a	new
temporary	name	for	every	redefinition	of	a	variable	and	limit	the	range	of	earlier
definition	till	this	redefinition.

LLVM	views	global	variables	as	pointers,	so	an	explicit	dereference	of	the	global	variable
using	load	instruction	is	required.	Similarly,	to	store	a	value,	an	explicit	store	instruction	is
required.

Local	variables	have	two	categories:

Register	allocated	local	variables:	These	are	the	temporaries	and	allocated	virtual
registers.	The	virtual	registers	are	allocated	physical	registers	during	the	code
generation	phase	which	we	will	see	in	a	later	chapter	of	the	book.	They	are	created	by
using	a	new	symbol	for	the	variable	like:

%1	=	some	value

Stack	allocated	local	variables:	These	are	created	by	allocating	variables	on	the
stack	frame	of	a	currently	executing	function,	using	the	alloca	instruction.	The

alloca	instruction	gives	a	pointer	to	the	allocated	type	and	explicit	use	of	load	and
store	instructions	is	required	to	access	and	store	the	value.

%2	=	alloca	i32

Now	let’s	see	how	the	add	function	is	represented	in	LLVM	IR.	define	i32	@add(i32
%a)	is	very	similar	to	how	functions	are	declared	in	C.	It	specifies	the	function	returns
integer	type	i32	and	takes	an	integer	argument.	Also,	the	function	name	is	preceded	by
‘@‘,	meaning	it	has	global	visibility.

Within	the	function	is	actual	processing	for	functionality.	Some	important	things	to	note
here	are	that	LLVM	uses	a	three-address	instruction,	that	is	a	data	processing	instruction,
which	has	two	source	operands	and	places	the	result	in	a	separate	destination	operand	(%4
=	add	i32	%2,	%3).	Also	the	code	is	in	SSA	form,	that	is	each	value	in	the	IR	has	a	single
assignment	which	defines	the	value.	This	is	useful	for	a	number	of	optimizations.

The	attributes	string	that	follows	in	the	generated	IR	specifies	the	function	attributes
which	are	very	similar	to	C++	attributes.	These	attributes	are	for	the	function	that	has	been
defined.	For	each	function	defined	there	is	a	set	of	attributes	defined	in	the	LLVM	IR.

The	code	that	follows	the	attributes	is	for	the	ident	directive	that	identifies	the	module
and	compiler	version.

LLVM	tools	and	using	them	in	the
command	line
Until	now,	we	have	understood	what	LLVM	IR	(human	readable	form)	is	and	how	it	can
be	used	to	represent	a	high-level	language.	Now,	we	will	take	a	look	at	some	of	the	tools
that	LLVM	provides	so	that	we	can	play	around	with	this	IR	converting	to	other	formats
and	back	again	to	the	original	form.	Let’s	take	a	look	at	these	tools	one	by	one	along	with
examples.

llvm-as:	This	is	the	LLVM	assembler	that	takes	LLVM	IR	in	assembly	form	(human
readable)	and	converts	it	to	bitcode	format.	Use	the	preceding	add.ll	as	an	example
to	convert	it	into	bitcode.	To	know	more	about	the	LLVM	Bitcode	file	format	refer	to
http://llvm.org/docs/BitCodeFormat.html

$	llvm-as	add.ll	–o	add.bc

To	view	the	content	of	this	bitcode	file,	a	tool	such	as	hexdump	can	be	used.

$	hexdump	–c	add.bc

llvm-dis:	This	is	the	LLVM	disassembler.	It	takes	a	bitcode	file	as	input	and	outputs
the	llvm	assembly.

$	llvm-dis	add.bc	–o	add.ll

If	you	check	add.ll	and	compare	it	with	the	previous	version,	it	will	be	the	same	as
the	previous	one.

llvm-link:	llvm-link	links	two	or	more	llvm	bitcode	files	and	outputs	one	llvm
bitcode	file.	To	view	a	demo	write	a	main.c	file	that	calls	the	function	in	the	add.c
file.

$	cat	main.c

#include<stdio.h>

extern	int	add(int);

int	main()	{

int	a	=	add(2);

printf("%d\n",a);

return	0;

}

Convert	the	C	source	code	to	LLVM	bitcode	format	using	the	following	command.

$	clang	-emit-llvm	-c	main.c

Now	link	main.bc	and	add.bc	to	generate	output.bc.

$	llvm-link	main.bc	add.bc	-o	output.bc

lli:	lli	directly	executes	programs	in	LLVM	bitcode	format	using	a	just-in-time
compiler	or	interpreter,	if	one	is	available	for	the	current	architecture.	lli	is	not	like	a

http://llvm.org/docs/BitCodeFormat.html

virtual	machine	and	cannot	execute	IR	of	different	architecture	and	can	only	interpret
for	host	architecture.	Use	the	bitcode	format	file	generated	by	llvm-link	as	input	to
lli.	It	will	display	the	output	on	the	standard	output.

$	lli	output.bc

14

llc:	llc	is	the	static	compiler.	It	compiles	LLVM	inputs	(assembly	form/	bitcode	form)
into	assembly	language	for	a	specified	architecture.	In	the	following	example	it	takes
the	output.bc	file	generated	by	llvm-link	and	generates	the	assembly	file	output.s.

$	llc	output.bc	–o	output.s

Let’s	look	at	the	content	of	the	output.s	assembly,	specifically	the	two	functions	of
the	generated	code,	which	is	very	similar	to	what	a	native	assembler	would	have
generated.

Function	main:

		.type		main,@function

main:																																			#	@main

		.cfi_startproc

#	BB#0:

		pushq		%rbp

.Ltmp0:

		.cfi_def_cfa_offset	16

.Ltmp1:

		.cfi_offset	%rbp,	-16

		movq		%rsp,	%rbp

.Ltmp2:

		.cfi_def_cfa_register	%rbp

		subq		$16,	%rsp

		movl		$0,	-4(%rbp)

		movl		$2,	%edi

		callq		add

		movl		%eax,	%ecx

		movl		%ecx,	-8(%rbp)

		movl		$.L.str,	%edi

		xorl		%eax,	%eax

		movl		%ecx,	%esi

		callq		printf

		xorl		%eax,	%eax

		addq		$16,	%rsp

		popq		%rbp

		retq

.Lfunc_end0:

Function:	add

add:																																				#	@add

		.cfi_startproc

#	BB#0:

		pushq		%rbp

.Ltmp3:

		.cfi_def_cfa_offset	16

.Ltmp4:

		.cfi_offset	%rbp,	-16

		movq		%rsp,	%rbp

.Ltmp5:

		.cfi_def_cfa_register	%rbp

		movl		%edi,	-4(%rbp)

		addl		globvar(%rip),	%edi

		movl		%edi,	%eax

		popq		%rbp

		retq

.Lfunc_end1:

opt:	This	is	modular	LLVM	analyzer	and	optimizer.	It	takes	the	input	file	and	runs
the	optimization	or	analysis	specified	on	the	command	line.	Whether	it	runs	the
analyzer	or	optimizer	depends	on	the	command-line	option.

opt	[options]	[input	file	name]

When	the	–analyze	option	is	provided	it	performs	various	analysis	on	the	input.
There	is	a	set	of	analysis	options	already	provided	that	can	be	specified	through
command	line	or	else	one	can	write	down	their	own	analysis	pass	and	provide	the
library	to	that	analysis	pass.	Some	of	the	useful	analysis	passes	that	can	be	specified
using	the	following	command	line	arguments	are:

basicaa:	basic	alias	analysis
da:	dependence	analysis
instcount:	count	the	various	instruction	types.
loops:	information	about	loops
scalar	evolution:	analysis	of	scalar	evolution

When	the	–analyze	option	is	not	passed,	the	opt	tool	does	the	actual	optimization
work	and	tries	to	optimize	the	code	depending	upon	the	command-line	options
passed.	Similarly	to	the	preceding	case,	you	can	use	some	of	the	optimization	passes
already	present	or	write	your	own	pass	for	optimization.	Some	of	the	useful
optimization	passes	that	can	be	specified	using	the	following	command-line
arguments	are:

constprop:	simple	constant	propagation.
dce:	dead	code	elimination	pass
globalopt:	pass	for	global	variable	optimization
inline:	pass	for	function	inlining
instcombine:	for	combining	redundant	instructions
licm:	loop	invariant	code	motion
tailcallelim:	Tail	Call	elimination

Note
Before	going	ahead	we	must	note	that	all	the	tools	mentioned	in	this	chapter	are	meant	for
compiler	writers.	An	end	user	can	directly	use	clang	for	compilation	of	C	code	without
converting	the	C	code	into	intermediate	representation

Tip

Downloading	the	example	code

You	can	download	the	example	code	files	from	your	account	at	http://www.packtpub.com
for	all	the	Packt	Publishing	books	you	have	purchased.	If	you	purchased	this	book
elsewhere,	you	can	visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-
mailed	directly	to	you.

http://www.packtpub.com
http://www.packtpub.com/support

Summary
In	this	chapter,	we	looked	into	the	modular	design	of	LLVM:	How	it	is	used	in	the	opt	tool
of	LLVM,	and	how	it	is	applicable	across	LLVM	core	libraries.	Then	we	took	a	look	into
LLVM	intermediate	representation,	and	how	various	entities	(variables,	functions	etc.)	of	a
language	are	mapped	to	LLVM	IR.	In	the	last	section,	we	discussed	about	some	of	the
important	LLVM	tools,	and	how	they	can	be	used	to	transform	the	LLVM	IR	from	one
form	to	another.

In	the	next	chapter,	we	will	see	how	we	can	write	a	frontend	for	a	language	that	can	output
LLVM	IR	using	the	LLVM	machinery.

Chapter	2.	Building	LLVM	IR
A	high	level	programming	language	facilitates	human	interaction	with	the	target	machine.
Most	of	the	popular	high	level	languages	today	have	certain	basic	elements	such	as
variables,	loops,	if-else	decision	making	statements,	blocks,	functions,	and	so	on.	A
variable	holds	value	of	data	types;	a	basic	block	gives	an	idea	of	the	scope	of	the	variable.
An	if-else	decision	statement	helps	in	selection	of	a	path	of	code.	A	function	makes	a
block	of	code	reusable.	High	level	languages	may	vary	in	type	checking,	type	casting,
variable	declarations,	complex	data	types,	and	so	on.	However,	almost	every	other
language	has	the	basic	building	blocks	listed	earlier	in	this	section.

A	language	may	have	its	own	parser	which	tokenizes	the	statement	and	extracts
meaningful	information	such	as	identifier,	its	data	type;	a	function	name,	its	declaration,
definition	and	calls;	a	loop	condition,	and	so	on.	This	meaningful	information	may	be
stored	in	a	data	structure	where	the	flow	of	the	code	can	be	easily	retrieved.	Abstract
Syntax	Tree	(AST)	is	a	popular	tree	representation	of	the	source	code.	The	AST’s	can	be
used	for	further	transformation	and	analysis.

A	language	parser	can	be	written	in	various	ways	with	various	tools	such	as	lex,	yacc,	and
so	on,	or	can	even	be	handwritten.	Writing	an	efficient	parser	is	an	art	in	itself.	But	this	is
not	what	we	intend	to	cover	in	this	chapter.	We	would	like	to	focus	more	on	LLVM	IR	and
how	a	high-level	language	after	parsing	can	be	converted	to	LLVM	IR	using	LLVM
libraries.

This	chapter	will	cover	how	to	construct	basic	working	LLVM	sample	code,	which
includes	the	following:

Creating	an	LLVM	module
Emitting	a	function	in	a	module
Adding	a	block	to	a	function
Emitting	a	global	variable
Emitting	a	return	statement
Emitting	function	arguments
Emitting	a	simple	arithmetic	statement	in	a	basic	block
Emitting	if-else	condition	IR
Emitting	LLVM	IR	for	loops

Creating	an	LLVM	module
In	the	previous	chapter,	we	got	an	idea	as	to	how	an	LLVM	IR	looks.	In	LLVM,	a	module
represents	a	single	unit	of	code	that	is	to	be	processed	together.	An	LLVM	module	class	is
the	top-level	container	for	all	other	LLVM	IR	objects.	The	LLVM	module	contains	global
variables,	functions,	data	layout,	host	triples,	and	so	on.	Let’s	create	a	simple	LLVM
module.

LLVM	provides	Module()	constructor	for	creating	a	module.	The	first	argument	is	the
name	of	the	module.	The	second	argument	is	LLVMContext.	Let’s	get	these	arguments	in
the	main	function	and	create	a	module	as	demonstrated	here:

static	LLVMContext	&Context	=	getGlobalContext();

static	Module	*ModuleOb	=	new	Module("my	compiler",	Context);

For	these	functions	to	work,	we	need	to	include	certain	header	files:

#include	"llvm/IR/LLVMContext.h"

#include	"llvm/IR/Module.h"

using	namespace	llvm;

static	LLVMContext	&Context	=	getGlobalContext();

static	Module	*ModuleOb	=	new	Module("my	compiler",	Context);

int	main(int	argc,	char	*argv[])	{

		ModuleOb->dump();

		return	0;

}

Put	this	code	in	a	file,	let’s	say	toy.cpp	and	compile	it:

$	clang++	-O3	toy.cpp	`llvm-config	--cxxflags	--ldflags	--system-libs	--

libs	core`	-o	toy

$./toy

The	output	will	be	as	follows:

;	ModuleID	=	'my	compiler'

Emitting	a	function	in	a	module
Now	that	we	have	created	a	module,	the	next	step	is	to	emit	a	function.	LLVM	has	an
IRBuilder	class	that	is	used	to	generate	LLVM	IR	and	print	it	using	the	dump	function	of
the	Module	object.	LLVM	provides	the	class	llvm::Function	to	create	a	function	and
llvm::FunctionType()	to	associate	a	return	type	for	the	function.	Let’s	assume	that	our
foo()	function	returns	an	integer	type.

Function	*createFunc(IRBuilder<>	&Builder,	std::string	Name)	{

		FunctionType	*funcType	=	llvm::FunctionType::get(Builder.getInt32Ty(),	

false);

		Function	*fooFunc	=	llvm::Function::Create(

						funcType,	llvm::Function::ExternalLinkage,	Name,	ModuleOb);

		return	fooFunc;

}

Finally,	call	function	verifyFunction()	on	fooFunc.	This	function	performs	a	variety	of
consistency	checks	on	the	generated	code,	to	determine	if	our	compiler	is	doing
everything	right.

int	main(int	argc,	char	*argv[])	{

		static	IRBuilder<>	Builder(Context);

		Function	*fooFunc	=	createFunc(Builder,	"foo");

		verifyFunction(*fooFunc);

		ModuleOb->dump();

		return	0;

}

Add	the	IR/IRBuilder.h,	IR/DerivedTypes.h	and	IR/Verifier.h	file	in	include	section.

The	overall	code	is	as	follows:

#include	"llvm/IR/IRBuilder.h"

#include	"llvm/IR/LLVMContext.h"

#include	"llvm/IR/Module.h"

#include	"llvm/IR/Verifier.h"

#include	<vector>

using	namespace	llvm;

static	LLVMContext	&Context	=	getGlobalContext();

static	Module	*ModuleOb	=	new	Module("my	compiler",	Context);

Function	*createFunc(IRBuilder<>	&Builder,	std::string	Name)	{

		FunctionType	*funcType	=	llvm::FunctionType::get(Builder.getInt32Ty(),	

false);

		Function	*fooFunc	=	llvm::Function::Create(

						funcType,	llvm::Function::ExternalLinkage,	Name,	ModuleOb);

		return	fooFunc;

}

int	main(int	argc,	char	*argv[])	{

		static	IRBuilder<>	Builder(Context);

		Function	*fooFunc	=	createFunc(Builder,	"foo");

		verifyFunction(*fooFunc);

		ModuleOb->dump();

		return	0;

}

Compile	the	toy.cpp	with	the	same	options	as	stated	earlier:

$	clang++	-O3	toy.cpp	`llvm-config	--cxxflags	--ldflags	--system-libs	--

libs	core`	-o	toy

The	output	will	be	as	follows:

$./toy

;	ModuleID	=	'my	compiler'

declare	i32	@foo()

Adding	a	block	to	a	function
A	function	consists	of	basic	blocks.	A	basic	block	has	an	entry	point.	A	basic	block
consists	of	a	number	of	IR	instructions,	the	last	instruction	being	a	terminator	instruction.
It	has	single	exit	point.	LLVM	provides	the	BasicBlock	class	to	create	and	handle	basic
blocks.	A	basic	block	might	have	an	entry	point	as	its	label,	which	indicates	where	to
insert	the	next	instructions.	We	can	use	the	IRBuilder	object	to	hold	these	new	basic
block	IR.

BasicBlock	*createBB(Function	*fooFunc,	std::string	Name)	{

		return	BasicBlock::Create(Context,	Name,	fooFunc);

}

The	overall	code	is	as	follows:

#include	"llvm/IR/IRBuilder.h"

#include	"llvm/IR/LLVMContext.h"

#include	"llvm/IR/Module.h"

#include	"llvm/IR/Verifier.h"

#include	<vector>

using	namespace	llvm;

static	LLVMContext	&Context	=	getGlobalContext();

static	Module	*ModuleOb	=	new	Module("my	compiler",	Context);

Function	*createFunc(IRBuilder<>	&Builder,	std::string	Name)	{

		FunctionType	*funcType	=	llvm::FunctionType::get(Builder.getInt32Ty(),	

false);

		Function	*fooFunc	=	llvm::Function::Create(

						funcType,	llvm::Function::ExternalLinkage,	Name,	ModuleOb);

		return	fooFunc;

}

BasicBlock	*createBB(Function	*fooFunc,	std::string	Name)	{

		return	BasicBlock::Create(Context,	Name,	fooFunc);

}

int	main(int	argc,	char	*argv[])	{

		static	IRBuilder<>	Builder(Context);

		Function	*fooFunc	=	createFunc(Builder,	"foo");

		BasicBlock	*entry	=	createBB(fooFunc,	"entry");

		Builder.SetInsertPoint(entry);

		verifyFunction(*fooFunc);

		ModuleOb->dump();

		return	0;

}

Compile	the	toy.cpp	file:

$	clang++	-O3	toy.cpp	`llvm-config	--cxxflags	--ldflags	--system-libs	--

libs	core`	-o	toy

The	output	will	be	as	follows:

;	ModuleID	=	'my	compiler'

define	i32	@foo()	{

entry:

}

Emitting	a	global	variable
Global	variables	have	visibility	of	all	the	functions	within	a	given	module.	LLVM
provides	the	GlobalVariable	class	to	create	global	variables	and	set	its	properties	such	as
linkage	type,	alignment,	and	so	on.	The	Module	class	has	the	method
getOrInsertGlobal()	to	create	a	global	variable.	It	takes	two	arguments—the	first	is	the
name	of	the	variable	and	the	second	is	the	data	type	of	the	variable.

As	global	variables	are	part	of	a	module,	we	create	global	variables	after	creating	the
module.	Insert	the	following	code	just	after	creating	the	module	in	toy.cpp:

GlobalVariable	*createGlob(IRBuilder<>	&Builder,	std::string	Name)	{

		ModuleOb->getOrInsertGlobal(Name,	Builder.getInt32Ty());

		GlobalVariable	*gVar	=	ModuleOb->getNamedGlobal(Name);

		gVar->setLinkage(GlobalValue::CommonLinkage);

		gVar->setAlignment(4);

		return	gVar;

}

Linkage	is	what	determines	if	multiple	declarations	of	the	same	object	refer	to	the	same
object,	or	to	separate	ones.	The	LLVM	reference	manual	cites	the	following	types	of
Linkages:

ExternalLinkage Externally	visible	function.

AvailableExternallyLinkage Available	for	inspection,	not	emission.

LinkOnceAnyLinkage Keep	one	copy	of	function	when	linking	(inline)

LinkOnceODRLinkage Same,	but	only	replaced	by	something	equivalent.

WeakAnyLinkage Keep	one	copy	of	named	function	when	linking	(weak)

WeakODRLinkage Same,	but	only	replaced	by	something	equivalent.

AppendingLinkage Special	purpose,	only	applies	to	global	arrays.

InternalLinkage Rename	collisions	when	linking	(static	functions).

PrivateLinkage Like	internal,	but	omit	from	symbol	table.

ExternalWeakLinkage ExternalWeak	linkage	description.

CommonLinkage Tentative	definitions

Alignment	gives	information	about	address	alignment.	An	alignment	must	be	a	power	of
2.	If	not	specified	explicitly,	it	is	set	by	the	target.	The	maximum	alignment	is	1	<<	29.

The	overall	code	is	as	follows:

#include	"llvm/IR/IRBuilder.h"

#include	"llvm/IR/LLVMContext.h"

#include	"llvm/IR/Module.h"

#include	"llvm/IR/Verifier.h"

#include	<vector>

using	namespace	llvm;

static	LLVMContext	&Context	=	getGlobalContext();

static	Module	*ModuleOb	=	new	Module("my	compiler",	Context);

Function	*createFunc(IRBuilder<>	&Builder,	std::string	Name)	{

		FunctionType	*funcType	=	llvm::FunctionType::get(Builder.getInt32Ty(),	

false);

		Function	*fooFunc	=	llvm::Function::Create(

						funcType,	llvm::Function::ExternalLinkage,	Name,	ModuleOb);

		return	fooFunc;

}

BasicBlock	*createBB(Function	*fooFunc,	std::string	Name)	{

		return	BasicBlock::Create(Context,	Name,	fooFunc);

}

GlobalVariable	*createGlob(IRBuilder<>	&Builder,	std::string	Name)	{

		ModuleOb->getOrInsertGlobal(Name,	Builder.getInt32Ty());

		GlobalVariable	*gVar	=	ModuleOb->getNamedGlobal(Name);

		gVar->setLinkage(GlobalValue::CommonLinkage);

		gVar->setAlignment(4);

		return	gVar;

}

int	main(int	argc,	char	*argv[])	{

		static	IRBuilder<>	Builder(Context);

		GlobalVariable	*gVar	=	createGlob(Builder,	"x");

		Function	*fooFunc	=	createFunc(Builder,	"foo");

		BasicBlock	*entry	=	createBB(fooFunc,	"entry");

		Builder.SetInsertPoint(entry);

		verifyFunction(*fooFunc);

		ModuleOb->dump();

		return	0;

}

Compile	the	toy.cpp:

$	clang++	-O3	toy.cpp	`llvm-config	--cxxflags	--ldflags	--system-libs	--

libs	core`	-o	toy

The	output	will	be	as	follows:

;	ModuleID	=	'my	compiler'

@x	=	common	global	i32,	align	4

define	i32	@foo()	{

entry:

}

Emitting	a	return	statement
A	function	might	return	a	value	or	it	may	return	void.	Here	in	our	example,	we	have
defined	that	our	function	returns	an	integer.	Let’s	assume	that	our	function	returns	0.	The
first	step	is	to	get	a	0	value,	which	can	be	done	using	the	Constant	class.

Builder.CreateRet(Builder.getInt32(0));

The	overall	code	is	as	follows:

#include	"llvm/IR/IRBuilder.h"

#include	"llvm/IR/LLVMContext.h"

#include	"llvm/IR/Module.h"

#include	"llvm/IR/Verifier.h"

#include	<vector>

using	namespace	llvm;

static	LLVMContext	&Context	=	getGlobalContext();

static	Module	*ModuleOb	=	new	Module("my	compiler",	Context);

Function	*createFunc(IRBuilder<>	&Builder,	std::string	Name)	{

		FunctionType	*funcType	=	llvm::FunctionType::get(Builder.getInt32Ty(),	

false);

		Function	*fooFunc	=	llvm::Function::Create(

						funcType,	llvm::Function::ExternalLinkage,	Name,	ModuleOb);

		return	fooFunc;

}

BasicBlock	*createBB(Function	*fooFunc,	std::string	Name)	{

		return	BasicBlock::Create(Context,	Name,	fooFunc);

}

GlobalVariable	*createGlob(IRBuilder<>	&Builder,	std::string	Name)	{

		ModuleOb->getOrInsertGlobal(Name,	Builder.getInt32Ty());

		GlobalVariable	*gVar	=	ModuleOb->getNamedGlobal(Name);

		gVar->setLinkage(GlobalValue::CommonLinkage);

		gVar->setAlignment(4);

		return	gVar;

}

int	main(int	argc,	char	*argv[])	{

		static	IRBuilder<>	Builder(Context);

		GlobalVariable	*gVar	=	createGlob(Builder,	"x");

		Function	*fooFunc	=	createFunc(Builder,	"foo");

		BasicBlock	*entry	=	createBB(fooFunc,	"entry");

		Builder.SetInsertPoint(entry);

		Builder.CreateRet(Builder.getInt32(0));

		verifyFunction(*fooFunc);

		ModuleOb->dump();

		return	0;

}

Compile	toy.cpp	file

$	clang++	-O3	toy.cpp	`llvm-config	--cxxflags	--ldflags	--system-libs	--

libs	core`	-o	toy

The	output	will	be	as	follows:

;	ModuleID	=	'my	compiler'

@x	=	common	global	i32,	align	4

define	i32	@foo()	{

entry:

		ret	i32	0

}

Emitting	function	arguments
A	function	takes	arguments	that	have	their	own	data	type.	For	simplification,	assume	that
our	function	has	all	the	arguments	of	i32	type	(integer	32	bit).

For	example,	we	will	consider	that	two	arguments,	a	and	b,	are	passed	to	the	function.	We
will	store	these	two	arguments	in	a	vector:

	static	std::vector	<std::string>	FunArgs;

	FunArgs.push_back("a");

	FunArgs.push_back("b");

The	next	step	is	to	specify	that	the	function	will	have	two	arguments.	This	can	be	done	by
passing	the	Integer	argument	to	the	functiontype.

Function	*createFunc(IRBuilder<>	&Builder,	std::string	Name)	{

		std::vector<Type	*>	Integers(FunArgs.size(),	Type::getInt32Ty(Context));

		FunctionType	*funcType	=

						llvm::FunctionType::get(Builder.getInt32Ty(),	Integers,	false);

		Function	*fooFunc	=	llvm::Function::Create(

						funcType,	llvm::Function::ExternalLinkage,	Name,	ModuleOb);

		return	fooFunc;

}

The	last	step	is	to	set	the	names	of	the	function	arguments.	This	can	be	done	by	Function
argument	iterator	in	a	loop,	as	shown:

void	setFuncArgs(Function	*fooFunc,	std::vector<std::string>	FunArgs)	{

		unsigned	Idx	=	0;

		Function::arg_iterator	AI,	AE;

		for	(AI	=	fooFunc->arg_begin(),	AE	=	fooFunc->arg_end();	AI	!=	AE;

							++AI,	++Idx)

				AI->setName(FunArgs[Idx]);

}

The	overall	code	is	as	follows:

#include	"llvm/IR/IRBuilder.h"

#include	"llvm/IR/LLVMContext.h"

#include	"llvm/IR/Module.h"

#include	"llvm/IR/Verifier.h"

#include	<vector>

using	namespace	llvm;

static	LLVMContext	&Context	=	getGlobalContext();

static	Module	*ModuleOb	=	new	Module("my	compiler",	Context);

static	std::vector<std::string>	FunArgs;

Function	*createFunc(IRBuilder<>	&Builder,	std::string	Name)	{

		std::vector<Type	*>	Integers(FunArgs.size(),	Type::getInt32Ty(Context));

		FunctionType	*funcType	=

						llvm::FunctionType::get(Builder.getInt32Ty(),	Integers,	false);

		Function	*fooFunc	=	llvm::Function::Create(

						funcType,	llvm::Function::ExternalLinkage,	Name,	ModuleOb);

		return	fooFunc;

}

void	setFuncArgs(Function	*fooFunc,	std::vector<std::string>	FunArgs)	{

		unsigned	Idx	=	0;

		Function::arg_iterator	AI,	AE;

		for	(AI	=	fooFunc->arg_begin(),	AE	=	fooFunc->arg_end();	AI	!=	AE;

							++AI,	++Idx)

				AI->setName(FunArgs[Idx]);

}

BasicBlock	*createBB(Function	*fooFunc,	std::string	Name)	{

		return	BasicBlock::Create(Context,	Name,	fooFunc);

}

GlobalVariable	*createGlob(IRBuilder<>	&Builder,	std::string	Name)	{

		ModuleOb->getOrInsertGlobal(Name,	Builder.getInt32Ty());

		GlobalVariable	*gVar	=	ModuleOb->getNamedGlobal(Name);

		gVar->setLinkage(GlobalValue::CommonLinkage);

		gVar->setAlignment(4);

		return	gVar;

}

int	main(int	argc,	char	*argv[])	{

		FunArgs.push_back("a");

		FunArgs.push_back("b");

		static	IRBuilder<>	Builder(Context);

		GlobalVariable	*gVar	=	createGlob(Builder,	"x");

		Function	*fooFunc	=	createFunc(Builder,	"foo");

		setFuncArgs(fooFunc,	FunArgs);

		BasicBlock	*entry	=	createBB(fooFunc,	"entry");

		Builder.SetInsertPoint(entry);

		Builder.CreateRet(Builder.getInt32(0));

		verifyFunction(*fooFunc);

		ModuleOb->dump();

		return	0;

}

Compile	the	toy.cpp	file:

$	clang++	-O3	toy.cpp	`llvm-config	--cxxflags	--ldflags	--system-libs	--

libs	core`	-o	toy

The	output	will	be	as	follows:

;	ModuleID	=	'my	compiler'

@x	=	common	global	i32,	align	4

define	i32	@foo(i32	%a,	i32	%b)	{

entry:

		ret	i32	0

}

Emitting	a	simple	arithmetic	statement	in
a	basic	block
A	basic	block	consists	of	a	list	of	instructions.	For	example,	an	instruction	can	be	a	simple
statement	performing	tasks	based	on	some	simple	arithmetic	instruction.	We	will	see	how
the	LLVM	API	can	be	used	to	emit	arithmetic	instructions.

For	example,	if	we	want	to	multiply	first	argument	a	with	integer	value	16,	we	will	create
a	constant	integer	value	16	with	the	following	API:

Value	*constant	=	Builder.getInt32(16);

We	already	have	a	from	the	function	argument	list:

Value	*Arg1	=	fooFunc->arg_begin();

LLVM	provides	a	rich	list	of	API’s	to	create	binary	operations.	You	can	go	through	the
include/llvm/IR/IRBuild.h	file	for	more	details	on	the	APIs.

Value	*createArith(IRBuilder<>	&Builder,	Value	*L,	Value	*R)	{

		return	Builder.CreateMul(L,	R,	"multmp");

}

Note
Note	that	for	demo	purposes,	the	preceding	function	returns	multiplication.	We	leave	it	to
the	readers	to	make	this	function	more	flexible	to	return	any	binary	operations.	You	can
explore	more	binary	operations	in	include/llvm/IR/IRBuild.h.

The	whole	code	now	looks	as	follows:

#include	"llvm/IR/IRBuilder.h"

#include	"llvm/IR/LLVMContext.h"

#include	"llvm/IR/Module.h"

#include	"llvm/IR/Verifier.h"

#include	<vector>

using	namespace	llvm;

static	LLVMContext	&Context	=	getGlobalContext();

static	Module	*ModuleOb	=	new	Module("my	compiler",	Context);

static	std::vector<std::string>	FunArgs;

Function	*createFunc(IRBuilder<>	&Builder,	std::string	Name)	{

		std::vector<Type	*>	Integers(FunArgs.size(),	Type::getInt32Ty(Context));

		FunctionType	*funcType	=

						llvm::FunctionType::get(Builder.getInt32Ty(),	Integers,	false);

		Function	*fooFunc	=	llvm::Function::Create(

						funcType,	llvm::Function::ExternalLinkage,	Name,	ModuleOb);

		return	fooFunc;

}

void	setFuncArgs(Function	*fooFunc,	std::vector<std::string>	FunArgs)	{

		unsigned	Idx	=	0;

		Function::arg_iterator	AI,	AE;

		for	(AI	=	fooFunc->arg_begin(),	AE	=	fooFunc->arg_end();	AI	!=	AE;

							++AI,	++Idx)

				AI->setName(FunArgs[Idx]);

}

BasicBlock	*createBB(Function	*fooFunc,	std::string	Name)	{

		return	BasicBlock::Create(Context,	Name,	fooFunc);

}

GlobalVariable	*createGlob(IRBuilder<>	&Builder,	std::string	Name)	{

		ModuleOb->getOrInsertGlobal(Name,	Builder.getInt32Ty());

		GlobalVariable	*gVar	=	ModuleOb->getNamedGlobal(Name);

		gVar->setLinkage(GlobalValue::CommonLinkage);

		gVar->setAlignment(4);

		return	gVar;

}

Value	*createArith(IRBuilder<>	&Builder,	Value	*L,	Value	*R)	{

		return	Builder.CreateMul(L,	R,	"multmp");

}

int	main(int	argc,	char	*argv[])	{

		FunArgs.push_back("a");

		FunArgs.push_back("b");

		static	IRBuilder<>	Builder(Context);

		GlobalVariable	*gVar	=	createGlob(Builder,	"x");

		Function	*fooFunc	=	createFunc(Builder,	"foo");

		setFuncArgs(fooFunc,	FunArgs);

		BasicBlock	*entry	=	createBB(fooFunc,	"entry");

		Builder.SetInsertPoint(entry);

		Value	*Arg1	=	fooFunc->arg_begin();

		Value	*constant	=	Builder.getInt32(16);

		Value	*val	=	createArith(Builder,	Arg1,	constant);

		Builder.CreateRet(val);

		verifyFunction(*fooFunc);

		ModuleOb->dump();

		return	0;

}

Compile	the	following	program:

$	clang++	-O3	toy.cpp	`llvm-config	--cxxflags	--ldflags		--system-libs	--

libs	core`	-o	toy

The	output	will	be	as	follows:

;	ModuleID	=	'my	compiler'

@x	=	common	global	i32,	align	4

define	i32	@foo(i32	%a,	i32	%b)	{

entry:

		%multmp	=	mul	i32	%a,	16

		ret	i32	%multmp

}

Did	you	notice	the	return	value?	We	returned	the	multiplication	instead	of	constant	0.

Emitting	if-else	condition	IR
An	if-else	statement	has	a	condition	expression	and	two	code	paths	to	execute,	depending
on	the	condition	evaluating	to	true	or	false.	The	condition	expression	is	generally	a
comparison	statement.	Let’s	emit	a	condition	statement	at	the	start	of	the	block.	For
example,	let	the	condition	be	like	a<100.

	Value	*val2	=	Builder.getInt32(100);

	Value	*Compare	=	Builder.CreateICmpULT(val,	val2,	"cmptmp");	

On	compilation,	we	get	following	output:

;	ModuleID	=	'my	compiler'

@x	=	common	global	i32,	align	4

define	i32	@foo(i32	%a,	i32	%b)	{

entry:

		%multmp	=	mul	i32	%a,	16

		%cmptmp	=	icmp	ult	i32	%multmp,	100

		

		ret	i32	%multmp

}

The	next	step	is	to	define	the	then	and	else	block	expressions,	which	will	be	executed
depending	on	the	result	of	condition	expression	“booltmp“.	Here,	an	important	concept	of
PHI	instruction	comes	into	picture.	A	phi	instruction	takes	various	values	coming	from
different	basic	blocks	and	decides	which	value	to	assign	depending	on	the	condition
expression.

Two	separate	basic	blocks	“ThenBB”	and	“ElseBB”	will	be	created.	Let’s	say	that	the	then
expression	is	‘add	1	to	a’	and	else	expression	is	‘add	2	to	a’.

A	third	block	will	represent	the	merge	block,	which	contains	the	instructions	to	be
executed	at	the	merging	of	the	then	and	else	blocks.	These	blocks	need	to	be	pushed	into
the	function	foo().

For	reusability,	we	create	BasicBlock	and	Value	containers	as	follows:

typedef	SmallVector<BasicBlock	*,	16>	BBList;

typedef	SmallVector<Value	*,	16>	ValList;

Note
Note	that	SmallVector<>	is	vector	container	wrapper	provided	by	LLVM	for	simplicity.

We	also	push	some	of	the	values	in	a	Value*	list	to	process	them	in	the	if-else	block,	as
follows:

	Value	*Condtn	=	Builder.CreateICmpNE(Compare,	Builder.getInt32(0),

	"ifcond");

	ValList	VL;

	VL.push_back(Condtn);

	VL.push_back(Arg1);

We	create	three	basic	blocks	and	push	them	in	container,	as	follows:

		BasicBlock	*ThenBB	=	createBB(fooFunc,	"then");

		BasicBlock	*ElseBB	=	createBB(fooFunc,	"else");

		BasicBlock	*MergeBB	=	createBB(fooFunc,	"ifcont");

		BBList	List;

		List.push_back(ThenBB);

		List.push_back(ElseBB);

		List.push_back(MergeBB);

We	finally	create	a	function	to	emit	the	if-else	block:

Value	*createIfElse(IRBuilder<>	&Builder,	BBList	List,	ValList	VL)	{

		Value	*Condtn	=	VL[0];

		Value	*Arg1	=	VL[1];

		BasicBlock	*ThenBB	=	List[0];

		BasicBlock	*ElseBB	=	List[1];

		BasicBlock	*MergeBB	=	List[2];

		Builder.CreateCondBr(Condtn,	ThenBB,	ElseBB);

		Builder.SetInsertPoint(ThenBB);

		Value	*ThenVal	=	Builder.CreateAdd(Arg1,	Builder.getInt32(1),	

"thenaddtmp");

		Builder.CreateBr(MergeBB);

		Builder.SetInsertPoint(ElseBB);

		Value	*ElseVal	=	Builder.CreateAdd(Arg1,	Builder.getInt32(2),	

"elseaddtmp");

		Builder.CreateBr(MergeBB);

		unsigned	PhiBBSize	=	List.size()	-	1;

		Builder.SetInsertPoint(MergeBB);

		PHINode	*Phi	=	Builder.CreatePHI(Type::getInt32Ty(getGlobalContext()),	

PhiBBSize,	"iftmp");

		Phi->addIncoming(ThenVal,	ThenBB);

		Phi->addIncoming(ElseVal,	ElseBB);

		return	Phi;

}

Overall	code:

#include	"llvm/IR/IRBuilder.h"

#include	"llvm/IR/LLVMContext.h"

#include	"llvm/IR/Module.h"

#include	"llvm/IR/Verifier.h"

#include	<vector>

using	namespace	llvm;

static	LLVMContext	&Context	=	getGlobalContext();

static	Module	*ModuleOb	=	new	Module("my	compiler",	Context);

static	std::vector<std::string>	FunArgs;

typedef	SmallVector<BasicBlock	*,	16>	BBList;

typedef	SmallVector<Value	*,	16>	ValList;

Function	*createFunc(IRBuilder<>	&Builder,	std::string	Name)	{

		std::vector<Type	*>	Integers(FunArgs.size(),	Type::getInt32Ty(Context));

		FunctionType	*funcType	=

						llvm::FunctionType::get(Builder.getInt32Ty(),	Integers,	false);

		Function	*fooFunc	=	llvm::Function::Create(

						funcType,	llvm::Function::ExternalLinkage,	Name,	ModuleOb);

		return	fooFunc;

}

void	setFuncArgs(Function	*fooFunc,	std::vector<std::string>	FunArgs)	{

		unsigned	Idx	=	0;

		Function::arg_iterator	AI,	AE;

		for	(AI	=	fooFunc->arg_begin(),	AE	=	fooFunc->arg_end();	AI	!=	AE;

							++AI,	++Idx)

				AI->setName(FunArgs[Idx]);

}

BasicBlock	*createBB(Function	*fooFunc,	std::string	Name)	{

		return	BasicBlock::Create(Context,	Name,	fooFunc);

}

GlobalVariable	*createGlob(IRBuilder<>	&Builder,	std::string	Name)	{

		ModuleOb->getOrInsertGlobal(Name,	Builder.getInt32Ty());

		GlobalVariable	*gVar	=	ModuleOb->getNamedGlobal(Name);

		gVar->setLinkage(GlobalValue::CommonLinkage);

		gVar->setAlignment(4);

		return	gVar;

}

Value	*createArith(IRBuilder<>	&Builder,	Value	*L,	Value	*R)	{

		return	Builder.CreateMul(L,	R,	"multmp");

}

Value	*createIfElse(IRBuilder<>	&Builder,	BBList	List,	ValList	VL)	{

		Value	*Condtn	=	VL[0];

		Value	*Arg1	=	VL[1];

		BasicBlock	*ThenBB	=	List[0];

		BasicBlock	*ElseBB	=	List[1];

		BasicBlock	*MergeBB	=	List[2];

		Builder.CreateCondBr(Condtn,	ThenBB,	ElseBB);

		Builder.SetInsertPoint(ThenBB);

		Value	*ThenVal	=	Builder.CreateAdd(Arg1,	Builder.getInt32(1),	

"thenaddtmp");

		Builder.CreateBr(MergeBB);

		Builder.SetInsertPoint(ElseBB);

		Value	*ElseVal	=	Builder.CreateAdd(Arg1,	Builder.getInt32(2),	

"elseaddtmp");

		Builder.CreateBr(MergeBB);

		unsigned	PhiBBSize	=	List.size()	-	1;

		Builder.SetInsertPoint(MergeBB);

		PHINode	*Phi	=	Builder.CreatePHI(Type::getInt32Ty(getGlobalContext()),	

PhiBBSize,	"iftmp");

		PhiBBSize,	"iftmp");

		Phi->addIncoming(ThenVal,	ThenBB);

		Phi->addIncoming(ElseVal,	ElseBB);

		return	Phi;

}

int	main(int	argc,	char	*argv[])	{

		FunArgs.push_back("a");

		FunArgs.push_back("b");

		static	IRBuilder<>	Builder(Context);

		GlobalVariable	*gVar	=	createGlob(Builder,	"x");

		Function	*fooFunc	=	createFunc(Builder,	"foo");

		setFuncArgs(fooFunc,	FunArgs);

		BasicBlock	*entry	=	createBB(fooFunc,	"entry");

		Builder.SetInsertPoint(entry);

		Value	*Arg1	=	fooFunc->arg_begin();

		Value	*constant	=	Builder.getInt32(16);

		Value	*val	=	createArith(Builder,	Arg1,	constant);

		Value	*val2	=	Builder.getInt32(100);

		Value	*Compare	=	Builder.CreateICmpULT(val,	val2,	"cmptmp");

		Value	*Condtn	=	Builder.CreateICmpNE(Compare,	Builder.getInt32(0),	

"ifcond");

		ValList	VL;

		VL.push_back(Condtn);

		VL.push_back(Arg1);

		BasicBlock	*ThenBB	=	createBB(fooFunc,	"then");

		BasicBlock	*ElseBB	=	createBB(fooFunc,	"else");

		BasicBlock	*MergeBB	=	createBB(fooFunc,	"ifcont");

		BBList	List;

		List.push_back(ThenBB);

		List.push_back(ElseBB);

		List.push_back(MergeBB);

		Value	*v	=	createIfElse(Builder,	List,	VL);

		Builder.CreateRet(v);

		verifyFunction(*fooFunc);

		ModuleOb->dump();

		return	0;

}

After	compiling,	the	output	looks	like	the	following:

;	ModuleID	=	'my	compiler'

@x	=	common	global	i32,	align	4

define	i32	@foo(i32	%a,	i32	%b)	{

entry:

		%multmp	=	mul	i32	%a,	16

		%cmptmp	=	icmp	ult	i32	%multmp,	100

		%ifcond	=	icmp	ne	i1	%cmptmp,	i32	0

		br	i1	%ifcond,	label	%then,	label	%else

then:																																													;	preds	=	%entry

		%thenaddtmp	=	add	i32	%a,	1

		br	label	%ifcont

else:																																													;	preds	=	%entry

		%elseaddtmp	=	add	i32	%a,	2

		br	label	%ifcont

ifcont:																																											;	preds	=	%else,	%then

		%iftmp	=	phi	i32	[%thenaddtmp,	%then],	[%elseaddtmp,	%else]

		ret	i32	%iftmp

}

Emitting	LLVM	IR	for	loop
Similar	to	the	if-else	statement,	loops	can	also	be	emitted	using	LLVM	API’s,	with	slight
modification	of	the	code.	For	example,	we	want	to	have	LLVM	IR	for	the	following
Loops:

for(i=1;	i<	b;	i++)		{body}

The	loop	has	induction	variable	i,	which	has	some	initial	value	that	updates	after	each
iteration.	The	induction	variable	is	updated	after	each	iteration	by	a	step	value	that	is	1	in
the	preceding	example.	Then	there	is	a	loop	ending	condition.	In	the	preceding	example,
‘i=1‘	is	the	initial	value,	‘i<b‘	is	the	end	condition	of	the	loop,	and	‘i++‘	is	the	step	value
by	which	the	induction	variable	‘i‘	is	incremented	after	every	iteration	of	the	loop.

Before	writing	a	function	to	create	a	loop,	some	Value	and	BasicBlock	need	to	be	pushed
into	a	list,	as	follows:

Function::arg_iterator	AI	=	fooFunc->arg_begin();

		Value	*Arg1	=	AI++;

		Value	*Arg2	=	AI;

		Value	*constant	=	Builder.getInt32(16);

		Value	*val	=	createArith(Builder,	Arg1,	constant);

		ValList	VL;

		VL.push_back(Arg1);

		BBList	List;

		BasicBlock	*LoopBB	=	createBB(fooFunc,	"loop");

		BasicBlock	*AfterBB	=	createBB(fooFunc,	"afterloop");

		List.push_back(LoopBB);

		List.push_back(AfterBB);

		Value	*StartVal	=	Builder.getInt32(1);

Let’s	create	a	function	for	the	emitting	loop:

PHINode	*createLoop(IRBuilder<>	&Builder,	BBList	List,	ValList	VL,

																				Value	*StartVal,	Value	*EndVal)	{

		BasicBlock	*PreheaderBB	=	Builder.GetInsertBlock();

		Value	*val	=	VL[0];

		BasicBlock	*LoopBB	=	List[0];

		Builder.CreateBr(LoopBB);

		Builder.SetInsertPoint(LoopBB);

		PHINode	*IndVar	=	Builder.CreatePHI(Type::getInt32Ty(Context),	2,	"i");

		IndVar->addIncoming(StartVal,	PreheaderBB);

		Builder.CreateAdd(val,	Builder.getInt32(5),	"addtmp");

		Value	*StepVal	=	Builder.getInt32(1);

		Value	*NextVal	=	Builder.CreateAdd(IndVar,	StepVal,	"nextval");

		Value	*EndCond	=	Builder.CreateICmpULT(IndVar,	EndVal,	"endcond");

		EndCond	=	Builder.CreateICmpNE(EndCond,	Builder.getInt32(0),	"loopcond");

		BasicBlock	*LoopEndBB	=	Builder.GetInsertBlock();

		BasicBlock	*AfterBB	=	List[1];

		Builder.CreateCondBr(EndCond,	LoopBB,	AfterBB);

		Builder.SetInsertPoint(AfterBB);

		IndVar->addIncoming(NextVal,	LoopEndBB);

		return	IndVar;

}

Consider	the	following	lines	of	code:

IndVar->addIncoming(StartVal,	PreheaderBB);…

IndVar->addIncoming(NextVal,	LoopEndBB);

IndVar	is	a	PHI	node,	which	has	two	incoming	values	from	two	blocks—startval	from	the
Preheader	block	(i=1),	and	Nextval	from	the	LoopEnd	block.

The	overall	code	is	as	follows:

#include	"llvm/IR/IRBuilder.h"

#include	"llvm/IR/LLVMContext.h"

#include	"llvm/IR/Module.h"

#include	"llvm/IR/Verifier.h"

#include	<vector>

using	namespace	llvm;

typedef	SmallVector<BasicBlock	*,	16>	BBList;

typedef	SmallVector<Value	*,	16>	ValList;

static	LLVMContext	&Context	=	getGlobalContext();

static	Module	*ModuleOb	=	new	Module("my	compiler",	Context);

static	std::vector<std::string>	FunArgs;

Function	*createFunc(IRBuilder<>	&Builder,	std::string	Name)	{

		std::vector<Type	*>	Integers(FunArgs.size(),	Type::getInt32Ty(Context));

		FunctionType	*funcType	=

						llvm::FunctionType::get(Builder.getInt32Ty(),	Integers,	false);

		Function	*fooFunc	=	llvm::Function::Create(

						funcType,	llvm::Function::ExternalLinkage,	Name,	ModuleOb);

		return	fooFunc;

}

void	setFuncArgs(Function	*fooFunc,	std::vector<std::string>	FunArgs)	{

		unsigned	Idx	=	0;

		Function::arg_iterator	AI,	AE;

		for	(AI	=	fooFunc->arg_begin(),	AE	=	fooFunc->arg_end();	AI	!=	AE;

							++AI,	++Idx)

				AI->setName(FunArgs[Idx]);

}

BasicBlock	*createBB(Function	*fooFunc,	std::string	Name)	{

		return	BasicBlock::Create(Context,	Name,	fooFunc);

}

GlobalVariable	*createGlob(IRBuilder<>	&Builder,	std::string	Name)	{

		ModuleOb->getOrInsertGlobal(Name,	Builder.getInt32Ty());

		GlobalVariable	*gVar	=	ModuleOb->getNamedGlobal(Name);

		gVar->setLinkage(GlobalValue::CommonLinkage);

		gVar->setAlignment(4);

		return	gVar;

}

Value	*createArith(IRBuilder<>	&Builder,	Value	*L,	Value	*R)	{

		return	Builder.CreateMul(L,	R,	"multmp");

}

Value	*createLoop(IRBuilder<>	&Builder,	BBList	List,	ValList	VL,

																				Value	*StartVal,	Value	*EndVal)	{

		BasicBlock	*PreheaderBB	=	Builder.GetInsertBlock();

		Value	*val	=	VL[0];

		BasicBlock	*LoopBB	=	List[0];

		Builder.CreateBr(LoopBB);

		Builder.SetInsertPoint(LoopBB);

		PHINode	*IndVar	=	Builder.CreatePHI(Type::getInt32Ty(Context),	2,	"i");

		IndVar->addIncoming(StartVal,	PreheaderBB);

		Value	*Add	=	Builder.CreateAdd(val,	Builder.getInt32(5),	"addtmp");

		Value	*StepVal	=	Builder.getInt32(1);

		Value	*NextVal	=	Builder.CreateAdd(IndVar,	StepVal,	"nextval");

		Value	*EndCond	=	Builder.CreateICmpULT(IndVar,	EndVal,	"endcond");

		EndCond	=	Builder.CreateICmpNE(EndCond,	Builder.getInt32(0),	"loopcond");

		BasicBlock	*LoopEndBB	=	Builder.GetInsertBlock();

		BasicBlock	*AfterBB	=	List[1];

		Builder.CreateCondBr(EndCond,	LoopBB,	AfterBB);

		Builder.SetInsertPoint(AfterBB);

		IndVar->addIncoming(NextVal,	LoopEndBB);

		return	Add;

}

int	main(int	argc,	char	*argv[])	{

		FunArgs.push_back("a");

		FunArgs.push_back("b");

		static	IRBuilder<>	Builder(Context);

		GlobalVariable	*gVar	=	createGlob(Builder,	"x");

		Function	*fooFunc	=	createFunc(Builder,	"foo");

		setFuncArgs(fooFunc,	FunArgs);

		BasicBlock	*entry	=	createBB(fooFunc,	"entry");

		Builder.SetInsertPoint(entry);

		Function::arg_iterator	AI	=	fooFunc->arg_begin();

		Value	*Arg1	=	AI++;

		Value	*Arg2	=	AI;

		Value	*constant	=	Builder.getInt32(16);

		Value	*val	=	createArith(Builder,	Arg1,	constant);

		ValList	VL;

		VL.push_back(Arg1);

		BBList	List;

		BasicBlock	*LoopBB	=	createBB(fooFunc,	"loop");

		BasicBlock	*AfterBB	=	createBB(fooFunc,	"afterloop");

		List.push_back(LoopBB);

		List.push_back(AfterBB);

		Value	*StartVal	=	Builder.getInt32(1);

		Value	*Res	=	createLoop(Builder,	List,	VL,	StartVal,	Arg2);

		Builder.CreateRet(Res);

		verifyFunction(*fooFunc);

		ModuleOb->dump();

		return	0;

}

After	compiling	the	program,	we	get	the	following	output:

;	ModuleID	=	'my	compiler'

@x	=	common	global	i32,	align	4

define	i32	@foo(i32	%a,	i32	%b)	{

entry:

		%multmp	=	mul	i32	%a,	16

		br	label	%loop

loop:																																													;	preds	=	%loop,	%entry

		%i	=	phi	i32	[1,	%entry],	[%nextval,	%loop]

		%addtmp	=	add	i32	%a,	5

		%nextval	=	add	i32	%i,	1

		%endcond	=	icmp	ult	i32	%i,	%b

		%loopcond	=	icmp	ne	i1	%endcond,	i32	0

		br	i1	%loopcond,	label	%loop,	label	%afterloop

afterloop:																																								;	preds	=	%loop

		ret	i32	%addtmp

}

Summary
In	this	chapter,	you	learned	how	to	create	simple	LLVM	IR	using	rich	libraries	provided
by	LLVM.	Remember	that	LLVM	IR	is	an	intermediate	representation.	The	high-level
programming	languages	are	converted	to	LLVM	IR	using	the	custom	parser,	which	breaks
down	the	code	into	atomic	pieces	such	as	variables,	functions,	function	return	type,
function	arguments,	if-else	conditions,	loops,	pointers,	array,	and	so	on.	These	atomic
elements	can	be	stored	into	custom	data	structures	and	then	those	data	structures	can	be
used	to	emit	LLVM	IR,	as	demonstrated	in	this	chapter.

In	the	parser	phase,	syntactic	analysis	can	be	done,	while	lexical	analysis	and	type
checking	can	be	done	in	an	intermediate	stage	after	parsing	and	before	emitting	IR.

In	practical	usage,	one	would	hardly	find	the	IR	being	emitted	in	a	hard-coded	way	as
demonstrated	in	this	chapter.	Instead,	a	language	is	parsed	and	represented	in	an	Abstract
Syntax	Tree.	The	tree	is	then	used	to	emit	LLVM	IR	with	the	help	of	the	LLVM	library,	as
shown	earlier.	The	LLVM	community	has	provided	an	excellent	tutorial	for	writing	a
parser	and	emitting	LLVM	IR.	You	can	visit	http://llvm.org/docs/tutorial/	for	the	same.

In	the	next	chapter,	we	will	see	how	to	emit	some	complex	data	structures	such	as	array,
pointers.	Also,	we	will	go	through	some	examples	from	Clang,	the	frontend	for	C/C++,
and	understand	how	semantic	Analysis	is	done.

http://llvm.org/docs/tutorial/

Chapter	3.	Advanced	LLVM	IR
LLVM	provides	a	powerful	intermediate	representation	for	efficient	compiler
transformations	and	analysis,	while	providing	a	natural	means	to	debug	and	visualize	the
transformations.	The	IR	is	so	designed	that	it	can	be	easily	mapped	to	high	level
languages.	LLVM	IR	provides	typed	information,	which	can	be	used	for	various
optimizations.

In	the	last	chapter,	you	learned	how	to	create	some	simple	LLVM	instructions	within	a
function	and	module.	Starting	from	simple	examples	such	as	emitting	binary	operations,
we	constructed	functions	in	a	module	and	also	created	some	complex	programming
paradigms	such	as	if-else	and	loops.	LLVM	provides	a	rich	set	of	instructions	and
intrinsics	to	emit	a	complex	IR.

In	this	chapter,	we	will	go	through	some	more	examples	of	LLVM	IR	which	involve
memory	operations.	Some	advanced	topics	such	as	aggregate	data	types	and	operations	on
them	will	also	be	covered.	The	topics	covered	in	this	chapter	are	as	follows:

Getting	the	address	of	an	element
Reading	from	the	memory
Writing	into	a	memory	location
Inserting	a	scalar	into	a	vector
Extracting	a	scalar	from	a	vector

Memory	access	operations
Memory	is	an	important	component	of	almost	all	computing	systems.	Memory	stores	data,
which	needs	to	be	read	to	perform	operations	on	the	computing	system.	Results	of	the
operations	are	stored	back	in	the	memory.

The	first	step	is	to	get	the	location	of	the	desired	element	from	the	memory	and	store	the
address	in	which	that	particular	element	can	be	found.	You	will	now	learn	how	to	calculate
the	address	and	perform	load-store	operations.

Getting	the	address	of	an	element
In	LLVM,	the	getelementptr	instruction	is	used	to	get	the	address	of	an	element	in	an
aggregate	data	structure.	It	only	calculates	the	address	and	does	not	access	the	memory.

The	first	argument	of	the	getelementptr	instruction	is	a	type	used	as	the	basis	for
calculating	the	address.	The	second	argument	is	pointer	or	vector	of	pointers	which	act	as
base	of	the	address	-	which	in	our	array	case	will	be	a.	The	next	arguments	are	the	indices
of	the	element	to	be	accessed.

The	Language	reference	(http://llvm.org/docs/LangRef.html#getelementptr-instruction)
mentions	important	notes	on	getelementptr	instruction	as	follows:

The	first	index	always	indexes	the	pointer	value	given	as	the	first	argument,	the
second	index	indexes	a	value	of	the	type	pointed	to	(not	necessarily	the	value	directly
pointed	to,	since	the	first	index	can	be	non-zero),	etc.	The	first	type	indexed	into	must
be	a	pointer	value,	subsequent	types	can	be	arrays,	vectors,	and	structs.	Note	that
subsequent	types	being	indexed	into	can	never	be	pointers,	since	that	would	require
loading	the	pointer	before	continuing	calculation.

This	essentially	implies	two	important	things:

1.	 Every	pointer	has	an	index,	and	the	first	index	is	always	an	array	index.	If	it’s	a
pointer	to	a	structure,	you	have	to	use	index	0	to	mean	(the	first	such	structure),	then
the	index	of	the	element.

2.	 The	first	type	parameter	helps	GEP	identify	the	sizes	of	the	base	structure	and	its
elements,	thus	easily	calculating	the	address.	The	resulting	type	(%a1)	is	not
necessarily	the	same.

More	elaborated	explanation	is	provided	at	http://llvm.org/docs/GetElementPtr.html

Let’s	assume	that	we	have	a	pointer	to	a	vector	of	two	32	bit	integers	<2	x	i32>*	%a	and
we	want	to	access	second	integer	from	the	vector.	The	address	will	be	calculated	as

%a1	=	getelementptr	i32,	<2	x	i32>*	%a,	i32	1	

To	emit	this	instruction,	LLVM	API	can	be	used	as	follows:

First	create	an	array	type	which	will	be	passed	as	argument	to	the	function.

Function	*createFunc(IRBuilder<>	&Builder,	std::string	Name)	{

		Type	*u32Ty	=	Type::getInt32Ty(Context);

		Type	*vecTy	=	VectorType::get(u32Ty,	2);

		Type	*ptrTy	=	vecTy->getPointerTo(0);

		FunctionType	*funcType	=

						FunctionType::get(Builder.getInt32Ty(),	ptrTy,	false);

		Function	*fooFunc	=

						Function::Create(funcType,	Function::ExternalLinkage,	Name,	

ModuleOb);

		return	fooFunc;

http://llvm.org/docs/LangRef.html#getelementptr-instruction
http://llvm.org/docs/GetElementPtr.html

}

Value	*getGEP(IRBuilder<>	&Builder,	Value	*Base,	Value	*Offset)	{

		return	Builder.CreateGEP(Builder.getInt32Ty(),	Base,	Offset,	"a1");

}

The	whole	code	looks	like:

#include	"llvm/IR/IRBuilder.h"

#include	"llvm/IR/LLVMContext.h"

#include	"llvm/IR/Module.h"

#include	"llvm/IR/Verifier.h"

#include	<vector>

using	namespace	llvm;

static	LLVMContext	&Context	=	getGlobalContext();

static	Module	*ModuleOb	=	new	Module("my	compiler",	Context);

static	std::vector<std::string>	FunArgs;

Function	*createFunc(IRBuilder<>	&Builder,	std::string	Name)	{

		Type	*u32Ty	=	Type::getInt32Ty(Context);

		Type	*vecTy	=	VectorType::get(u32Ty,	2);

		Type	*ptrTy	=	vecTy->getPointerTo(0);

		FunctionType	*funcType	=

						FunctionType::get(Builder.getInt32Ty(),	ptrTy,	false);

		Function	*fooFunc	=

						Function::Create(funcType,	Function::ExternalLinkage,	Name,	

ModuleOb);

		return	fooFunc;

}

void	setFuncArgs(Function	*fooFunc,	std::vector<std::string>	FunArgs)	{

		unsigned	Idx	=	0;

		Function::arg_iterator	AI,	AE;

		for	(AI	=	fooFunc->arg_begin(),	AE	=	fooFunc->arg_end();	AI	!=	AE;

							++AI,	++Idx)

				AI->setName(FunArgs[Idx]);

}

BasicBlock	*createBB(Function	*fooFunc,	std::string	Name)	{

		return	BasicBlock::Create(Context,	Name,	fooFunc);

}

Value	*getGEP(IRBuilder<>	&Builder,	Value	*Base,	Value	*Offset)	{

		return	Builder.CreateGEP(Builder.getInt32Ty(),	Base,	Offset,	"a1");

}

int	main(int	argc,	char	*argv[])	{

		FunArgs.push_back("a");

		static	IRBuilder<>	Builder(Context);

		Function	*fooFunc	=	createFunc(Builder,	"foo");

		setFuncArgs(fooFunc,	FunArgs);

		Value	*Base	=	fooFunc->arg_begin();

		BasicBlock	*entry	=	createBB(fooFunc,	"entry");

		Builder.SetInsertPoint(entry);

		Value	*gep	=	getGEP(Builder,	Base,	Builder.getInt32(1));

		verifyFunction(*fooFunc);

		ModuleOb->dump();

		return	0;

}

Compile	the	code:

$	clang++	toy.cpp	`llvm-config	--cxxflags	--ldflags	--system-libs	--libs	

core`	-fno-rtti	-o	toy

$./toy

Output:

;	ModuleID	=	'my	compiler'

define	i32	@foo(<2	x	i32>*	%a)	{

entry:

		%a1	=	getelementptr	i32,	<2	x	i32>*	%a,	i32	1

		ret	i32	0

}

Reading	from	the	memory
Now,	since	we	have	the	address,	we	are	ready	to	read	the	data	from	that	address	and	assign
the	read	value	to	a	variable.

In	LLVM	the	load	instruction	is	used	to	read	from	a	memory	location.	This	simple
instruction	or	combination	of	similar	instructions	may	then	be	mapped	to	some	of	the
sophisticated	memory	read	instructions	in	low-level	assembly.

A	load	instruction	takes	an	argument,	which	is	the	memory	address	from	which	the	data
should	be	read.	We	obtained	the	address	in	the	previous	section	by	the	getelementptr
instruction	in	a1.

The	load	instruction	looks	like	the	following:

%val	=	load	i32,	i32*	a1

This	means	that	the	load	will	take	the	data	pointed	by	a1	and	save	in	%val.

To	emit	this	we	can	use	the	API	provided	by	LLVM	in	a	function,	as	shown	in	the
following	code:

Value	*getLoad(IRBuilder<>	&Builder,	Value	*Address)	{

		return	Builder.CreateLoad(Address,	"load");

}

Let’s	also	return	the	loaded	value:

			builder.CreateRet(val);

The	whole	code	is	as	follows:

#include	"llvm/IR/IRBuilder.h"

#include	"llvm/IR/LLVMContext.h"

#include	"llvm/IR/Module.h"

#include	"llvm/IR/Verifier.h"

#include	<vector>

using	namespace	llvm;

static	LLVMContext	&Context	=	getGlobalContext();

static	Module	*ModuleOb	=	new	Module("my	compiler",	Context);

static	std::vector<std::string>	FunArgs;

Function	*createFunc(IRBuilder<>	&Builder,	std::string	Name)	{

		Type	*u32Ty	=	Type::getInt32Ty(Context);

		Type	*vecTy	=	VectorType::get(u32Ty,	2);

		Type	*ptrTy	=	vecTy->getPointerTo(0);

		FunctionType	*funcType	=

						FunctionType::get(Builder.getInt32Ty(),	ptrTy,	false);

		Function	*fooFunc	=

						Function::Create(funcType,	Function::ExternalLinkage,	Name,	

ModuleOb);

		return	fooFunc;

}

void	setFuncArgs(Function	*fooFunc,	std::vector<std::string>	FunArgs)	{

		unsigned	Idx	=	0;

		Function::arg_iterator	AI,	AE;

		for	(AI	=	fooFunc->arg_begin(),	AE	=	fooFunc->arg_end();	AI	!=	AE;

							++AI,	++Idx)

				AI->setName(FunArgs[Idx]);

}

BasicBlock	*createBB(Function	*fooFunc,	std::string	Name)	{

		return	BasicBlock::Create(Context,	Name,	fooFunc);

}

Value	*getGEP(IRBuilder<>	&Builder,	Value	*Base,	Value	*Offset)	{

		return	Builder.CreateGEP(Builder.getInt32Ty(),	Base,	Offset,	"a1");

}

Value	*getLoad(IRBuilder<>	&Builder,	Value	*Address)	{

		return	Builder.CreateLoad(Address,	"load");

}

int	main(int	argc,	char	*argv[])	{

		FunArgs.push_back("a");

		static	IRBuilder<>	Builder(Context);

		Function	*fooFunc	=	createFunc(Builder,	"foo");

		setFuncArgs(fooFunc,	FunArgs);

		Value	*Base	=	fooFunc->arg_begin();

		BasicBlock	*entry	=	createBB(fooFunc,	"entry");

		Builder.SetInsertPoint(entry);

		Value	*gep	=	getGEP(Builder,	Base,	Builder.getInt32(1));

		Value	*load	=	getLoad(Builder,	gep);

		Builder.CreateRet(load);

		verifyFunction(*fooFunc);

		ModuleOb->dump();

		return	0;

}

Compile	the	following	code:

$	clang++	toy.cpp	`llvm-config	--cxxflags	--ldflags	--system-libs	--libs	

core`	-fno-rtti	-o	toy

$./toy

The	following	is	the	output:

;	ModuleID	=	'my	compiler'

define	i32	@foo(<2	x	i32>*	%a)	{

entry:

		%a1	=	getelementptr	i32,	<2	x	i32>*	%a,	i32	1

		%load	=	load	i32,	i32*	%a1

		ret	i32	%load

}

Writing	into	a	memory	location
LLVM	uses	the	store	instruction	to	write	into	a	memory	location.	There	are	two
arguments	to	the	store	instruction:	a	value	to	store	and	an	address	at	which	to	store	it.	The
store	instruction	has	no	return	value.	Let’s	say	that	we	want	to	write	a	data	to	the	second
element	of	the	vector	of	two	integers.	The	store	instruction	looks	like	store	i32	3,
i32*	%a1.	To	emit	the	store	instruction,	we	can	use	the	following	API	provided	by
LLVM:

void	getStore(IRBuilder<>	&Builder,	Value	*Address,	Value	*V)	{

		Builder.CreateStore(V,	Address);

}

For	example,	we	will	multiply	the	second	element	of	the	<2	x	i32>	vector	by	16	and	store
it	back	at	the	same	location.

Consider	the	following	code:

#include	"llvm/IR/IRBuilder.h"

#include	"llvm/IR/LLVMContext.h"

#include	"llvm/IR/Module.h"

#include	"llvm/IR/Verifier.h"

#include	<vector>

using	namespace	llvm;

static	LLVMContext	&Context	=	getGlobalContext();

static	Module	*ModuleOb	=	new	Module("my	compiler",	Context);

static	std::vector<std::string>	FunArgs;

Function	*createFunc(IRBuilder<>	&Builder,	std::string	Name)	{

		Type	*u32Ty	=	Type::getInt32Ty(Context);

		Type	*vecTy	=	VectorType::get(u32Ty,	2);

		Type	*ptrTy	=	vecTy->getPointerTo(0);

		FunctionType	*funcType	=

						FunctionType::get(Builder.getInt32Ty(),	ptrTy,	false);

		Function	*fooFunc	=

						Function::Create(funcType,	Function::ExternalLinkage,	Name,	

ModuleOb);

		return	fooFunc;

}

void	setFuncArgs(Function	*fooFunc,	std::vector<std::string>	FunArgs)	{

		unsigned	Idx	=	0;

		Function::arg_iterator	AI,	AE;

		for	(AI	=	fooFunc->arg_begin(),	AE	=	fooFunc->arg_end();	AI	!=	AE;

							++AI,	++Idx)

				AI->setName(FunArgs[Idx]);

}

BasicBlock	*createBB(Function	*fooFunc,	std::string	Name)	{

		return	BasicBlock::Create(Context,	Name,	fooFunc);

}

Value	*createArith(IRBuilder<>	&Builder,	Value	*L,	Value	*R)	{

		return	Builder.CreateMul(L,	R,	"multmp");

}

Value	*getGEP(IRBuilder<>	&Builder,	Value	*Base,	Value	*Offset)	{

		return	Builder.CreateGEP(Builder.getInt32Ty(),	Base,	Offset,	"a1");

}

Value	*getLoad(IRBuilder<>	&Builder,	Value	*Address)	{

		return	Builder.CreateLoad(Address,	"load");

}

void	getStore(IRBuilder<>	&Builder,	Value	*Address,	Value	*V)	{

		Builder.CreateStore(V,	Address);

}

int	main(int	argc,	char	*argv[])	{

		FunArgs.push_back("a");

		static	IRBuilder<>	Builder(Context);

		Function	*fooFunc	=	createFunc(Builder,	"foo");

		setFuncArgs(fooFunc,	FunArgs);

		Value	*Base	=	fooFunc->arg_begin();

		BasicBlock	*entry	=	createBB(fooFunc,	"entry");

		Builder.SetInsertPoint(entry);

		Value	*gep	=	getGEP(Builder,	Base,	Builder.getInt32(1));

		Value	*load	=	getLoad(Builder,	gep);

		Value	*constant	=	Builder.getInt32(16);

		Value	*val	=	createArith(Builder,	load,	constant);

		getStore(Builder,	gep,	val);

		Builder.CreateRet(val);

		verifyFunction(*fooFunc);

		ModuleOb->dump();

		return	0;

}

Compile	the	following	code:

$	clang++	toy.cpp	`llvm-config	--cxxflags	--ldflags	--system-libs	--libs	

core`	-fno-rtti	-o	toy

$./toy

The	resulting	output	will	be	as	follows:

;	ModuleID	=	'my	compiler'

define	i32	@foo(<2	x	i32>*	%a)	{

entry:

		%a1	=	getelementptr	i32,	<2	x	i32>*	%a,	i32	1

		%load	=	load	i32,	i32*	%a1

		%multmp	=	mul	i32	%load,	16

		store	i32	%multmp,	i32*	%a1

		ret	i32	%multmp

}

Inserting	a	scalar	into	a	vector
LLVM	also	provides	the	API	to	emit	an	instruction,	which	inserts	a	scalar	into	a	vector
type.	Note	that	this	vector	is	different	from	an	array.	A	vector	type	is	a	simple	derived	type
that	represents	a	vector	of	elements.	Vector	types	are	used	when	multiple	primitive	data
are	operated	in	parallel	using	single	instruction	multiple	data	(SIMD).	A	vector	type
requires	a	size	(number	of	elements)	and	an	underlying	primitive	data	type.	For	example,
we	have	a	vector	Vec	that	has	four	integers	of	i32	type	<4	x	i32>.	Now,	we	want	to	insert
the	values	10,	20,	30,	and	40	at	0,	1,	2,	and	3	indexes	of	the	vector.

The	insertelement	instruction	takes	three	arguments.	The	first	argument	is	a	value	of
vector	type.	The	second	operand	is	a	scalar	value	whose	type	must	equal	the	element	type
of	the	first	operand.	The	third	operand	is	an	index	indicating	the	position	at	which	to	insert
the	value.	The	resultant	value	is	a	vector	of	the	same	type.

The	insertelement	instruction	looks	like	the	following:

%vec0	=	insertelement	<4	x	double>	Vec,	%val0,	%idx

This	can	be	further	understood	by	keeping	the	following	in	mind:

Vec	is	of	vector	type	<	4	x	i32	>
val0	is	the	value	to	be	inserted
idx	is	the	index	at	which	the	value	is	to	be	inserted	in	the	vector

Consider	the	following	code:

#include	"llvm/IR/IRBuilder.h"

#include	"llvm/IR/LLVMContext.h"

#include	"llvm/IR/Module.h"

#include	"llvm/IR/Verifier.h"

#include	<vector>

using	namespace	llvm;

static	LLVMContext	&Context	=	getGlobalContext();

static	Module	*ModuleOb	=	new	Module("my	compiler",	Context);

static	std::vector<std::string>	FunArgs;

Function	*createFunc(IRBuilder<>	&Builder,	std::string	Name)	{

		Type	*u32Ty	=	Type::getInt32Ty(Context);

		Type	*vecTy	=	VectorType::get(u32Ty,	4);

		FunctionType	*funcType	=

						FunctionType::get(Builder.getInt32Ty(),	vecTy,	false);

		Function	*fooFunc	=

						Function::Create(funcType,	Function::ExternalLinkage,	Name,	

ModuleOb);

		return	fooFunc;

}

void	setFuncArgs(Function	*fooFunc,	std::vector<std::string>	FunArgs)	{

		unsigned	Idx	=	0;

		Function::arg_iterator	AI,	AE;

		for	(AI	=	fooFunc->arg_begin(),	AE	=	fooFunc->arg_end();	AI	!=	AE;

							++AI,	++Idx)

				AI->setName(FunArgs[Idx]);

}

BasicBlock	*createBB(Function	*fooFunc,	std::string	Name)	{

		return	BasicBlock::Create(Context,	Name,	fooFunc);

}

Value	*getInsertElement(IRBuilder<>	&Builder,	Value	*Vec,	Value	*Val,

																								Value	*Index)	{

		return	Builder.CreateInsertElement(Vec,	Val,	Index);

}

int	main(int	argc,	char	*argv[])	{

		FunArgs.push_back("a");

		static	IRBuilder<>	Builder(Context);

		Function	*fooFunc	=	createFunc(Builder,	"foo");

		setFuncArgs(fooFunc,	FunArgs);

		BasicBlock	*entry	=	createBB(fooFunc,	"entry");

		Builder.SetInsertPoint(entry);

		Value	*Vec	=	fooFunc->arg_begin();

		for	(unsigned	int	i	=	0;	i	<	4;	i++)

				Value	*V	=	getInsertElement(Builder,	Vec,					Builder.getInt32((i	+	1)	

*	10),	Builder.getInt32(i));

		Builder.CreateRet(Builder.getInt32(0));

		verifyFunction(*fooFunc);

		ModuleOb->dump();

		return	0;

}

Compile	the	following	code:

$	clang++	toy.cpp	`llvm-config	--cxxflags	--ldflags	--system-libs	--libs	

core`	-fno-rtti	-o	toy

$./toy		

The	resulting	output	is	as	follows:

;	ModuleID	=	'my	compiler'

define	i32	@foo(<4	x	i32>	%a)	{

entry:

		%0	=	insertelement	<4	x	i32>	%a,	i32	10,	i32	0

		%1	=	insertelement	<4	x	i32>	%a,	i32	20,	i32	1

		%2	=	insertelement	<4	x	i32>	%a,	i32	30,	i32	2

		%3	=	insertelement	<4	x	i32>	%a,	i32	40,	i32	3

		ret	i32	0

}

The	vector	Vec	will	have	<10,	20,	30,	40>	values.

Extracting	a	scalar	from	a	vector
An	individual	scalar	element	can	be	extracted	from	a	vector.	LLVM	provides	the
extractelement	instruction	for	the	same.	The	first	operand	of	an	extractelement
instruction	is	a	value	of	vector	type.	The	second	operand	is	an	index	indicating	the
position	from	which	to	extract	the	element.

The	extractelement	instruction	looks	like	the	following:

result	=	extractelement	<4	x	i32>	%vec,	i32	%idx

This	can	be	further	understood	by	keeping	the	following	in	mind:

vec	is	a	vector
idx	is	the	index	at	which	the	data	to	be	extracted	lies
result	is	of	scalar	type,	which	is	i32	here

Let’s	take	an	example	where	we	want	to	add	all	the	elements	of	a	given	vector	and	return
an	integer.

Consider	the	following	code:

#include	"llvm/IR/IRBuilder.h"

#include	"llvm/IR/LLVMContext.h"

#include	"llvm/IR/Module.h"

#include	"llvm/IR/Verifier.h"

#include	<vector>

using	namespace	llvm;

static	LLVMContext	&Context	=	getGlobalContext();

static	Module	*ModuleOb	=	new	Module("my	compiler",	Context);

static	std::vector<std::string>	FunArgs;

Function	*createFunc(IRBuilder<>	&Builder,	std::string	Name)	{

		Type	*u32Ty	=	Type::getInt32Ty(Context);

		Type	*vecTy	=	VectorType::get(u32Ty,	4);

		FunctionType	*funcType	=

						FunctionType::get(Builder.getInt32Ty(),	vecTy,	false);

		Function	*fooFunc	=

						Function::Create(funcType,	Function::ExternalLinkage,	Name,	

ModuleOb);

		return	fooFunc;

}

void	setFuncArgs(Function	*fooFunc,	std::vector<std::string>	FunArgs)	{

		unsigned	Idx	=	0;

		Function::arg_iterator	AI,	AE;

		for	(AI	=	fooFunc->arg_begin(),	AE	=	fooFunc->arg_end();	AI	!=	AE;

							++AI,	++Idx)

				AI->setName(FunArgs[Idx]);

}

BasicBlock	*createBB(Function	*fooFunc,	std::string	Name)	{

		return	BasicBlock::Create(Context,	Name,	fooFunc);

}

Value	*createArith(IRBuilder<>	&Builder,	Value	*L,	Value	*R)	{

		return	Builder.CreateAdd(L,	R,	"add");

}

Value	*getExtractElement(IRBuilder<>	&Builder,	Value	*Vec,	Value	*Index)	{

		return	Builder.CreateExtractElement(Vec,	Index);

}

int	main(int	argc,	char	*argv[])	{

		FunArgs.push_back("a");

		static	IRBuilder<>	Builder(Context);

		Function	*fooFunc	=	createFunc(Builder,	"foo");

		setFuncArgs(fooFunc,	FunArgs);

		BasicBlock	*entry	=	createBB(fooFunc,	"entry");

		Builder.SetInsertPoint(entry);

		Value	*Vec	=	fooFunc->arg_begin();

		SmallVector<Value	*,	4>	V;

		for	(unsigned	int	i	=	0;	i	<	4;	i++)

				V[i]	=	getExtractElement(Builder,	Vec,	Builder.getInt32(i));

		Value	*add1	=	createArith(Builder,	V[0],	V[1]);

		Value	*add2	=	createArith(Builder,	add1,	V[2]);

		Value	*add	=	createArith(Builder,	add2,	V[3]);

		Builder.CreateRet(add);

		verifyFunction(*fooFunc);

		ModuleOb->dump();

		return	0;

}

Compile	the	following	code:

$	clang++	toy.cpp	`llvm-config	--cxxflags	--ldflags	--system-libs	--libs	

core`	-fno-rtti	-o	toy

$./toy		

Output:

ModuleID	=	'my	compiler'

define	i32	@foo(<4	x	i32>	%a)	{

entry:

		%0	=	extractelement	<4	x	i32>	%a,	i32	0

		%1	=	extractelement	<4	x	i32>	%a,	i32	1

		%2	=	extractelement	<4	x	i32>	%a,	i32	2

		%3	=	extractelement	<4	x	i32>	%a,	i32	3

		%add	=	add	i32	%0,	%1

		%add1	=	add	i32	%add,	%2

		%add2	=	add	i32	%add1,	%3

		ret	i32	%add2

}

Summary
Memory	operations	form	an	important	instruction	for	most	of	the	target	architecture.	Some
of	the	architectures	have	sophisticated	instructions	to	move	data	in	and	out	of	the	memory.
Some	even	perform	binary	operations	directly	on	the	memory	operands,	while	some	of
them	load	data	from	memory	into	registers	and	then	perform	operations	on	them	(CISC	vs
RISC).	Many	load-store	operations	are	also	done	by	LLVM	instrinsics.	For	examples,
please	refer	to	http://llvm.org/docs/LangRef.html#masked-vector-load-and-store-
intrinsics.

LLVM	IR	provides	a	common	playfield	for	all	the	architectures.	It	provides	elementary
instructions	for	data	operations	on	memory	or	on	aggregate	data	types.	The	architectures,
while	lowering	LLVM	IR,	may	combine	IR	instructions	to	emit	their	specific	instructions.
In	this	chapter,	we	went	through	some	advanced	IR	instructions	and	also	looked	into
examples	of	them.	For	a	detailed	study,	refer	to	http://llvm.org/docs/LangRef.html,	which
provides	the	authoritative	resource	for	LLVM	IR	instructions.

In	the	next	chapter,	you	will	study	how	LLVM	IR	can	be	optimized	to	reduce	instructions
and	emit	a	clean	code.

http://llvm.org/docs/LangRef.html#masked-vector-load-and-store-intrinsics
http://llvm.org/docs/LangRef.html

Chapter	4.	Basic	IR	Transformations
Until	now,	we	have	seen	how	the	IR	is	independent	of	its	target	and	how	it	can	be	used	to
generate	code	for	a	specific	backend.	To	generate	efficient	code	for	the	backend,	we
optimize	the	IR	generated	by	the	frontend	by	running	a	series	of	analysis	and
transformation	passes	using	the	LLVM	pass	manager.	We	must	note	that	most	of	the
optimizations	that	happen	in	a	compiler	take	place	on	the	IR,	one	of	the	reasons	being	that
the	IR	is	retargetable	and	the	same	set	of	optimizations	would	be	valid	for	a	number	of
targets.	It	reduces	the	effort	of	writing	the	same	optimization	for	every	target.	There	are
some	target-specific	optimizations	too;	they	happen	at	the	selection	DAG	level,	which	we
will	see	later.	Another	reason	for	IR	being	the	target	of	optimization	is	that	LLVM	IR	is	in
SSA	form,	which	means	every	variable	is	assigned	only	once	and	every	new	assignment	to
a	variable	is	a	new	variable	itself.	One	very	visible	benefit	of	this	representation	is	that	we
don’t	have	to	do	reaching	definition	analysis	where	some	variable	is	assigned	a	value	of
another	variable.	SSA	representation	also	helps	in	a	number	of	optimizations	such	as
constant	propagation,	dead	code	elimination,	and	so	on.	Going	ahead,	we	will	see	some	of
the	important	optimizations	in	LLVM,	what	is	the	role	of	LLVM	Pass	Infrastructure,	and
how	we	can	use	the	opt	tool	to	perform	different	optimizations.

In	this	chapter,	we	will	cover	following	topics:

The	opt	tool
Pass	and	Pass	Manager
Using	other	Pass	info	in	own	pass
IR	simplification	examples
IR	combination	examples

Opt	Tool
Opt	is	the	LLVM	Optimizer	and	analyzer	tool	that	is	run	on	LLVM	IR	to	optimize	the	IR
or	produce	an	analysis	about	it.	We	saw	in	the	first	chapter	a	very	basic	introduction	to	the
opt	tool,	and	how	to	use	it	to	run	analysis	and	transformation	passes.	In	this	section,	we
will	see	what	else	the	opt	tool	does.	We	must	note	that	opt	is	a	developer	tool	and	all	the
optimizations	that	it	provides	can	be	invoked	from	the	frontend	as	well.

With	the	opt	tool,	we	can	specify	the	level	of	optimization	that	we	need,	which	means	we
can	specify	the	optimization	levels	from	O0,	O1,	O2,	to	O3(O0	being	the	least	optimized
code	and	O3	being	the	most	optimized	code).	Apart	from	these,	there	is	also	an
optimization	level	Os	or	Oz,	which	deals	with	space	optimization.	The	syntax	to	invoke
one	of	these	optimizations	is:

$	opt	-Ox	-S	input.ll

Here,	x	represents	the	optimization	level,	which	can	have	a	value	from	0	to	3	or	s	or	z.
These	optimization	levels	are	similar	to	what	Clang	frontend	specifies.	-O0	represents	no
optimization	whereas	–O1	means	only	few	optimizations	are	enabled.	–O2	is	a	moderate
level	of	optimization	and	–O3	is	the	highest	level	of	optimization,	which	is	similar	to	–O2
but	it	allows	optimization	that	takes	longer	to	perform	or	may	generate	larger	code	(the	O3
level	does	not	guarantee	that	the	code	will	be	the	most	optimized	and	efficient,	it	just	says
that	the	compiler	will	try	more	to	optimize	the	code	and	in	the	process	may	break	things
also).	–Os	means	optimization	for	size,	basically	not	running	optimizations	which	increase
code	size	(for	example,	it	removes	slp-vectorizer	optimization)	and	perform
optimizations	that	reduce	code	size	(for	example,	instruction	combining	optimization).

We	can	direct	the	opt	tool	to	run	a	specific	pass	that	we	require.	These	passes	can	be	one
of	the	already	defined	passes	listed	at	http://llvm.org/docs/Passes.html	or	one	of	the	passes
we	have	written	ourselves.	The	passes	listed	in	the	above	link	are	also	run	in	the
optimization	levels	of	-O1,	-O2,	and	-O3.	To	view	which	pass	is	being	run	at	a	certain
optimization	level,	use	the	-debug-pass=Structure	command-line	option	along	with	the
opt	tool.

Let’s	take	an	example	to	demonstrate	the	difference	between	the	O1	and	O2	level	of
optimization.	The	O3	level	generally	has	one	or	two	more	passes	from	O2.	So,	let’s	take	an
example	and	see	how	much	the	O2	level	of	optimization	optimizes	the	code.	Write	the	test
code	in	the	test.ll	file:

define	internal	i32	@test(i32*	%X,	i32*	%Y)

{		

				%A	=	load	i32,	i32*	%X

				%B	=	load	i32,	i32*	%Y

				%C	=	add	i32	%A,	%B

				ret	i32	%C

}

define	internal	i32	@caller(i32*	%B)

{

				%A	=	alloca	i32

http://llvm.org/docs/Passes.html

				store	i32	1,	i32*	%A

				%C	=	call	i32	@test(i32*	%A,	i32*	%B)

				ret	i32	%C

}

define	i32	@callercaller()

{

				%B	=	alloca	i32

				store	i32	2,	i32*	%B

				%X	=	call	i32	@caller(i32*	%B)

				ret	i32	%X

}

In	this	test	code,	the	callercaller	function	calls	the	caller	function,	which	in	turn	calls
the	test	function,	which	performs	an	addition	of	two	numbers	and	returns	the	value	to	its
caller,	which	in	turn	returns	the	value	to	the	callercaller	function.

Now,	run	the	O1	and	O2	levels	of	optimization,	as	shown:

$	opt	-O1	-S	test.ll	>	1.ll

$	opt	-O2	-S	test.ll	>	2.ll

The	following	screenshot	shows	the	difference	in	the	optimized	code	for	the	O1	and	O2
levels:

As	we	can	see,	the	code	in	O2	has	optimized	the	calls	to	the	function	and	the	Add
operations	as	well	and	returns	the	result	directly	from	the	callercaller	function.	This	is
obtained	due	to	the	fact	that	O2	optimization	runs	the	passes	always-inline	which	inlines
all	the	function	calls	and	treats	the	code	as	one	big	function.	Then,	in	also	runs	the
globaldce	pass,	which	eliminates	unreachable	internals	from	the	code.	After	this,	it	runs
constmerge	which	merges	duplicate	global	constants	into	a	single	constant.	It	also
performs	a	global	value	numbering	pass	that	eliminates	partially	or	fully	redundant
instructions	and	eliminates	redundant	load	instructions.

Pass	and	Pass	Manager
LLVM’s	Pass	infrastructure	is	one	of	the	many	important	features	of	the	LLVM	system.
There	are	a	number	of	analysis	and	optimization	passes	that	can	be	run	using	this
infrastructure.	The	starting	point	for	LLVM	passes	is	the	Pass	class,	which	is	a	superclass
of	all	the	passes.	We	need	to	inherit	from	some	predefined	subclasses	taking	into	account
what	our	pass	is	going	to	implement.

ModulePass:	This	is	the	most	general	superclass.	By	inheriting	this	class	we	allow
the	entire	module	to	be	analyzed	at	once.	The	functions	within	the	module	may	not
be	referred	to	in	a	particular	order.	To	use	it,	write	a	subclass	that	inherits	from	the
ModulePass	subclass	and	overloads	the	runOnModule	function.

Note
Before	going	ahead	with	the	discussion	of	other	Pass	classes,	let’s	look	into	the	three
virtual	methods	that	the	Pass	classes	override:

doInitialization:	This	is	meant	to	do	initialization	stuff	that	does	not	depend	on
the	current	function	being	processed.
runOn{Passtype}:	This	is	the	method	where	we	should	implement	our	subclass
for	the	functionality	of	the	pass.	This	will	be	runOnFunction	for	FunctionPass,
runOnLoop	for	LoopPass,	and	so	on.
doFinalization:	This	is	called	when	runOn{Passtype}	has	finished	doing	the
job	for	every	function	in	the	program.

FunctionPass:	These	passes	execute	on	each	function	present	in	the	module,
independent	from	other	functions	in	the	module.	There	is	no	defined	order	in	which
the	functions	will	be	processed.	They	are	not	allowed	to	modify	functions	other	than
the	one	being	processed,	and	any	addition	or	deletion	of	functions	from	the	current
module	is	also	not	allowed.	To	implement	FunctionPass	we	might	need	to	overload
the	three	virtual	functions	mentioned	earlier	by	implementing	in	the	runOnFunction
method.
BasicBlockPass:	These	passes	work	on	basic	blocks	one	at	a	time,	independently	of
other	basic	blocks	present	in	the	program.	They	are	not	allowed	to	add	or	delete	any
new	basic	block	or	change	the	CFG.	They	are	also	not	allowed	to	do	things	that
FunctionPass	is	not	allowed	to.	To	implement,	they	can	override	the
doInitialization	and	doFinalization	methods	of	FunctionPass,	or	overload	their
own	virtual	methods	for	the	two	methods	mentioned	earlier	and	the
runOnBasicBlock	method.
LoopPass:	These	passes	work	on	each	loop	in	the	function,	independent	of	all	other
loops	within	the	function.	Loops	are	processed	in	such	a	way	that	the	outermost	loop
is	executed	the	last.	To	implement	LoopPass	we	need	to	overload	the
doInitialization,	doFinalization,	and	runOnLoop	methods.

Now,	let’s	see	how	to	get	started	with	writing	a	custom	pass.	Let’s	write	a	pass	that	will
print	the	names	of	all	the	functions.

Before	getting	started	with	writing	the	implementation	of	the	pass,	we	need	to	make
changes	in	a	few	places	in	the	code	so	that	the	pass	is	recognized	and	can	be	run.

We	need	to	create	a	directory	under	the	LLVM	tree.	Let’s	make	a	directory,
lib/Transforms/FnNamePrint.	In	this	directory,	we	need	to	create	a	Makefile	with	the
following	contents,	which	will	allow	our	pass	to	be	compiled:

LEVEL	=	../../..

LIBRARYNAME	=	FnNamePrint

LOADABLE_MODULE	=	1

include	$(LEVEL)/Makefile.common

This	specifies	that	all	.cpp	files	should	be	compiled	and	linked	into	a	shared	object	that
will	be	available	in	the	lib	folder	of	the	build-folder	(build-
folder/lib/FnNamePrint.so).

Now,	let’s	get	started	with	writing	the	actual	pass	implementation.	We	need	to	create	the
source	file	for	the	pass	in	lib/Transforms/FnNamePrint:	let’s	name	it	FnNamePrint.cpp.
The	first	step	now	is	to	choose	the	correct	subclass.	In	this	case,	as	we	are	trying	to	print
names	of	each	function,	the	FunctionPass	class	will	serve	our	purpose	by	processing	one
function	at	a	time.	Also,	we	are	only	printing	the	name	of	function	and	not	modifying
anything	within	it,	so	we	are	choosing	FunctionPass	for	simplicity.	We	could	use
ModulePass	as	well	because	it	is	an	Immutable	Pass.

Now,	let’s	write	the	source	code	for	the	pass	implementation,	which	looks	like	this:

#include	"llvm/Pass.h"

#include	"llvm/IR/Function.h"

#include	"llvm/Support/raw_ostream.h"

using	namespace	llvm;

namespace	{

		struct	FnNamePrint:	public	FunctionPass	{

				static	char	ID;

				FnNamePrint	()	:	FunctionPass(ID)	{}

				bool	runOnFunction(Function	&F)	override	{

						errs()	<<	"Function	"	<<	F.getName()	<<	'\n';

						return	false;

				}

		};

}

char	FnNamePrint::ID	=	0;static	RegisterPass<	FnNamePrint	>	

X("funcnameprint","Function	Name	Print",	false,	false);

In	the	preceding	code	we	include	the	necessary	headers	first	and	use	an	llvm	namespace:

#include	"llvm/Pass.h"

#include	"llvm/IR/Function.h"

#include	"llvm/Support/raw_ostream.h"

using	namespace	llvm;

We	declare	our	pass	as	a	structure,	FnNamePrint,	which	is	a	subclass	of	FunctionPass.	In
runOnFunction	we	implement	the	logic	to	print	the	function	name.	The	bool	value
returned	in	the	end	signifies	whether	we	have	made	any	modification	within	the	function.
A	True	value	is	returned	if	some	modifications	was	made,	otherwise,	false	is	returned.	In
our	case,	we	are	not	making	any	modifications,	so	we	return	false.

struct	FnNamePrint:	public	FunctionPass	{

		static	char	ID;

		FnNamePrint	()	:	FunctionPass(ID)	{}

		bool	runOnFunction(Function	&F)	override	{

				errs()	<<	"Function	"	<<	F.getName()	<<	'\n';

				return	false;

				}

		};

}

Then,	we	declare	the	ID	for	the	pass,	which	is	used	to	identify	the	pass:

char	FnNamePrint::ID	=	0;

Finally,	we	need	to	register	the	passes	with	the	Pass	Manager.	The	first	argument	is	the
Pass	name	used	by	the	opt	tool	to	identify	this	pass.	The	second	argument	is	the	actual
Pass	name.	The	third	and	fourth	arguments	specify	whether	the	pass	modified	the	cfg	and
whether	it	is	an	analysis	pass.

static	RegisterPass<	FnNamePrint	>	X("funcnameprint","Function	Name	Print",	

false,	false);

Note
The	implementation	of	the	pass	is	done.	Now,	before	we	use	it,	we	need	to	build	LLVM
using	the	make	command,	which	will	build	the	shared	object	in	the	lib	folder	within	the
build	(build-folder/lib/FnNamePrint.so).

Now,	we	can	run	the	pass	over	a	test	case	using	the	opt	tool	in	the	following	way:

$	opt	-load	path-to-llvm/build/lib/FnNamePrint.so	-funcnameprint	test.ll

The	load	command	line	option	specifies	the	path	from	where	to	pick	the	shared	object	of
the	pass	and	–funcnameprint	is	the	option	to	opt	tool	to	tell	it	to	run	the	pass	we	have
written.	The	Pass	will	print	the	names	of	all	the	function	present	in	the	testcase.	For	the
example	in	the	first	section	it	will	print	out:

Function	test

Function	caller

Function	callercaller

So,	we	got	started	with	writing	a	Pass.	Now,	we	will	see	the	significance	of	the
PassManager	class	in	LLVM.

The	PassManager	class	schedules	the	passes	to	be	run	efficiently.	The	PassManager	is	used
by	all	LLVM	tools	that	run	passes	for	the	execution	of	these	passes.	It	is	the	responsibility

of	the	PassManager	to	make	sure	the	interaction	between	the	passes	is	correctly	done.	As
it	tries	to	execute	the	passes	in	an	optimized	way,	it	must	have	information	regarding	how
the	passes	interact	with	each	other	and	what	the	different	dependencies	between	the	passes
are.

A	pass	itself	can	specify	the	dependency	on	other	passes,	that	is,	which	passes	need	to	be
run	before	the	execution	of	the	current	pass.	Also,	it	can	specify	the	passes	that	will	be
invalidated	by	the	execution	of	the	current	pass.	The	PassManager	gets	the	analysis	results
before	a	pass	is	executed.	We	will	later	see	how	a	pass	can	specify	such	dependencies.

The	main	work	of	the	PassManager	is	to	avoid	the	calculation	of	analysis	results	time	and
again.	This	is	done	by	keeping	track	of	which	analyses	are	available,	which	are
invalidated,	and	which	analyses	are	required.	The	PassManager	tracks	the	lifetimes	of	the
analysis	results	and	frees	the	memory	holding	the	analysis	results	when	not	required,
allowing	for	optimal	memory	use.

The	PassManager	pipelines	the	passes	together	to	get	better	memory	and	cache	results,
improving	the	cache	behavior	of	the	compiler.	When	a	series	of	consecutive
FunctionPass	are	given,	it	will	execute	all	the	FunctionPass	on	the	first	function,	then	all
the	FunctionPass	on	the	second	function,	and	so	on.	This	improves	cache	behavior	as	it	is
only	dealing	with	the	single	function	part	of	the	LLVM	representation	and	not	the	entire
program.

The	PassManager	also	specifies	the	–debug-pass	option	with	which	we	can	see	how	one
pass	interacts	with	other	passes.	We	can	see	what	all	passes	are	run	using	the	–debug-
pass=Argument	option.	We	can	use	the	–debug-pass=Structure	option	to	see	how	the
passes	had	run.	It	will	also	give	us	the	names	of	the	passes	that	ran.	Let’s	take	the	example
of	the	test	code	in	the	first	section	of	this	chapter:

$	opt	-O2	-S	test.ll	-debug-pass=Structure

$	opt	-load	/build-folder/lib/LLVMFnNamePrint.so	test.ll	-funcnameprint	-

debug-pass=Structure

Pass	Arguments:		-targetlibinfo	-tti	-funcnameprint	-verify

Target	Library	Information

Target	Transform	Information

		ModulePass	Manager

				FunctionPass	Manager

						Function	Name	Print

						Module	Verifier

Function	test

Function	caller

Function	callercaller

In	the	output,	the	Pass	Arguments	gives	us	the	passes	that	are	run	and	the	following	list	is
the	structure	used	to	run	each	pass.	The	Passes	just	after	ModulePass	Manager	will	show
the	passes	run	per	module	(here,	it	is	empty).	The	passes	in	hierarchy	of	FunctionPass
Manager	show	that	these	passes	were	run	per	function	(Function	Name	Print	and	Module
Verifier),	which	is	the	expected	result.

The	PassManger	also	provides	some	other	useful	flags,	some	of	which	are	the	following:

time-passes:	This	gives	time	information	about	the	pass	along	with	the	other	passes
that	are	lined	up.
stats:	This	prints	statistics	about	each	pass.
instcount:	This	collects	the	count	of	all	instructions	and	reports	them.	–stats	must
also	be	Passes	to	the	opt	tool	so	that	the	results	of	instcount	are	visible.

Using	other	Pass	info	in	current	Pass
For	the	Pass	Manager	to	work	optimally	it	needs	to	know	the	dependencies	between	the
Passes.	Each	of	the	passes	can	itself	declare	its	dependencies:	the	analysis	passes	that	need
to	be	executed	before	this	pass	is	executed	and	the	passes	that	will	get	invalidated	after	the
current	pass	is	run.	To	specify	these	dependencies,	a	pass	needs	to	implement	the
getAnalysisUsage	method.

virtual	void	getAnalysisUsage(AnalysisUsage	&Info)	const;

Using	this	method	the	current	pass	can	specify	the	required	and	invalidated	sets	by	filling
in	the	details	in	the	AnalysisUsage	object.	To	fill	in	the	information	the	Pass	needs	to	call
any	of	the	following	methods:

AnalysisUsage::addRequired<>	method
This	method	arranges	for	the	execution	of	a	Pass	prior	to	the	current	Pass.	One	example	of
this	is:	for	memory	copy	optimization	it	needs	the	results	of	an	alias	analysis:

void	getAnalysisUsage(AnalysisUsage	&AU)	const	override	{

AU.addRequired<AliasAnalysis>();

…

…

}

By	adding	the	pass	required	to	run,	it	is	made	sure	that	Alias	Analysis	Pass	is	run
before	the	MemCpyOpt	Pass.	Also,	this	makes	sure	that	if	the	Alias	Analysis	has	been
invalidated	by	some	other	Pass,	it	will	be	run	before	the	MemCpyOpt	Pass	is	run.

AnalysisUsage:addRequiredTransitive<>	method
When	an	analysis	chains	to	other	analyses	for	results,	this	method	should	be	used	instead
of	the	addRequired	method.	That	is,	when	we	need	to	preserve	the	order	in	which	the
analysis	passes	are	run	we	use	this	method.	For	example:

void	DependenceAnalysis::getAnalysisUsage(AnalysisUsage	&AU)	const	{

		…

		AU.addRequiredTransitive<AliasAnalysis>();

		AU.addRequiredTransitive<ScalarEvolution>();

		AU.addRequiredTransitive<LoopInfo>();

}

Here,	DependenceAnalysis	chains	to	AliasAnalysis,	ScalarEvolution	and	LoopInfo
Passes	for	the	results.

AnalysisUsage::addPreserved<>	method
By	using	this	method	a	Pass	can	specify	which	analyses	of	other	Passes	it	will	not
invalidate	on	running:	that	is,	it	will	preserve	the	information	already	present,	if	any.	This
means	that	the	subsequent	passes	that	require	the	analysis	would	not	need	to	run	this
again.

For	example,	in	the	case	of	the	MemCpyOpt	Pass	seen	earlier,	it	required	the	AliasAnalysis
results	and	it	also	preserved	them.	Also:

void	getAnalysisUsage(AnalysisUsage	&AU)	const	override	{

						……

						AU.addPreserved<AliasAnalysis>();

						…..

				}

To	get	a	detailed	understanding	of	how	everything	is	linked	and	works	together,	you	can
pick	up	any	of	the	transformation	passes	and	go	through	the	source	code	and	you	will
know	how	they	are	getting	information	from	other	passes	and	how	they	are	using	it.

Instruction	simplification	example
In	this	section,	we	will	see	how	we	fold	instructions	into	simpler	forms	in	LLVM.	Here,
the	creation	of	new	instructions	will	not	take	place.	Instruction	simplification	does
constant	folding:

sub	i32	2,	1	->	1

That	is,	it	simplifies	the	sub	instruction	to	a	constant	value	1.

It	can	handle	non-constant	operands	as	well:

or	i32	%x,	0	->	%x

It	returns	a	value	of	variable	%x

and	i32	%x	%x	->	%x

In	this	case,	it	returns	an	already	existing	value.

The	implementations	for	the	methods	that	simplify	instructions	are	located	in
lib/Analysis/InstructionSimplify.cpp.

Some	of	the	important	methods	of	dealing	with	the	simplification	of	instructions	are:

SimplifyBinOp	method:	This	is	used	to	simplify	binary	operations	such	as	addition,
subtraction,	and	multiplication,	and	so	on.	It	has	the	function	signature	as	follows:

static	Value	*SimplifyBinOp(unsigned	Opcode,	Value	*LHS,	

Value	*RHS,	const	Query	&Q,	unsigned	MaxRecurse)

Here,	by	Opcode,	we	mean	the	operator	instruction	that	we	are	trying	to	simplify.	LHS	and
RHS	are	the	operands	on	either	side	of	the	operator.	MaxRecurse	is	the	recursion	level	we
specify	after	which	the	routine	must	stop	trying	simplification	of	the	instruction.

In	this	method,	we	have	a	switch	case	on	the	Opcode:

switch	(Opcode)	{

Using	this	Opcode,	the	method	decides	which	function	it	needs	to	call	for	simplification.
Some	of	the	methods	are	as	follows:

SimplifyAddInst:	This	method	tries	to	fold	the	result	of	the	Add	operator	when	the
operands	are	known.	Some	of	the	folding	is	as	follows:

X	+	undef	->	undef

X	+	0	->	X

X	+	(Y	-	X)	->	Y	or	(Y	-	X)	+	X	->	Y

The	code	for	the	last	simplification	in	the	function	static	Value
*SimplifyAddInst(Value	*Op0,	Value	*Op1,	bool	isNSW,	bool	isNUW,	const

Query	&Q,	unsigned	MaxRecurse)	looks	something	like	this:

if	(match(Op1,	m_Sub(m_Value(Y),	m_Specific(Op0)))	||

						match(Op0,	m_Sub(m_Value(Y),	m_Specific(Op1))))

				return	Y;

Here,	the	first	condition	matches	the	(Y-X)	value	in	the	expression	as	Operand1:
m_Value(Y)	denotes	value	of	Y	and	m_Specific(Op0)	denotes	X.	As	soon	as	it	is	matched
it	folds	the	expression	to	a	constant	value	Y	and	returns	it.	The	case	is	similar	for	the
second	part	of	our	condition:

SimplifySubInst:	This	method	tries	to	fold	the	result	of	subtract	operator	when	the
operators	are	known.	Some	examples	for	the	same	are	as	follows:

X	-	undef	->	undef

X	-	X	->	0

X	-	0	->	X

X	-	(X	-	Y)	->	Y

The	matching	of	instructions	and	folding	is	done	similar	to	as	shown	in	SimplifyAddInst:

SimplifyAndInst:	Similar	to	the	two	preceding	methods,	it	tries	to	fold	the	result	for
the	logical	operator	And.	Some	examples	of	this	are:

A	&	~A		=		~A	&	A		=		0

The	code	for	this,	in	the	method	looks	like:

if	(match(Op0,	m_Not(m_Specific(Op1)))	||

						match(Op1,	m_Not(m_Specific(Op0))))

				return	Constant::getNullValue(Op0->getType());

Here,	it	tries	to	match	A	and	~A	and	returns	a	Null	value,	0,	when	it	matches	the	condition.

So,	we	have	seen	a	bit	of	instruction	simplification.	Now,	what	do	we	do	if	we	can	replace
a	set	of	instructions	with	a	more	effective	set	of	instructions?

Instruction	Combining
Instruction	combining	is	a	LLVM	Pass	and	compiler	technique	in	which	we	replace	a
sequence	of	instructions	with	instructions	that	are	more	effective	and	give	the	same	result
on	execution	in	a	smaller	number	of	machine	cycles.	Instruction	combining	does	not	alter
the	CFG	of	the	program	and	is	mainly	used	for	algebraic	simplification.	The	major
difference	between	instruction	combining	and	instruction	simplification	is	that	in
instruction	simplification	we	cannot	generate	new	instructions,	which	is	possible	in
instruction	combining.	This	pass	is	run	by	specifying	the	–instcombine	argument	to	the
opt	tool	and	is	implemented	in	the	lib/transforms/instcombine	folder.	The
instcombine	Pass	combines

%Y	=	add	i32	%X,	1

%Z	=	add	i32	%Y,	1

into:

%Z	=	add	i32	%X,	2

It	has	removed	one	redundant	add	instruction	and	hence	combined	the	two	add
instructions	to	one.

The	LLVM	page	states	that	this	pass	guarantees	that	the	following	canonicalizations	are
performed	on	the	program:

Constant	operand	of	a	binary	operator	is	moved	to	RHS.
Bitwise	operators	with	constant	operands	are	grouped	together	with	shifts	being
performed	first	then	‘or’	operations,	‘and’	operations	and	then	‘xor	operations’
If	possible,	comparison	operators	are	converted	from	<,>,<=,>=	to	==	or	!=	.
All	cmp	instructions	operating	on	Boolean	values	are	replaced	with	logical	operations.
Add	X,	X	is	represented	by	X*2	,	that	is	X<<1
Multipliers	with	a	power-of-two	constant	argument	are	transformed	into	shifts.

This	pass	starts	from	bool	InstCombiner::runOnFunction(Function	&F)	located	in	the
InstructionCombining.cpp	file.	There	are	different	files	under	the
lib/Transform/InstCombine	folder	to	combine	instructions	related	to	different
instructions.	The	methods,	before	trying	to	combine	instructions,	try	to	simplify	them.
Some	of	these	methods	for	simplification	of	the	instcombine	module	are:

SimplifyAssociativeOrCommutative	function:	It	performs	simplification	for
operators	that	are	associative	or	commutative.	For	commutative	operators,	it	orders
the	operands	from	right	to	left	in	the	order	of	increasing	complexity.	For	associative
operations	of	the	form	“(X	op	Y)	op	Z“,	it	converts	it	to	“X	op	(Y	op	Z)”	if	(Y	op
Z)	can	be	simplified.
tryFactorization	function:	This	method	tries	to	simplify	binary	operations	by
factoring	out	common	terms	using	commutative	and	distributive	property	of	the
operator.	For	example,	(A*B)+(A*C)	is	simplified	to	A*(B+C).

Now,	let’s	look	at	instruction	combining.	As	described	earlier,	various	functionalities	are
implemented	in	different	files.	Let’s	take	an	example	testcode	and	see	where	to	add	code

so	that	instruction	combining	happens	for	our	testcode.

Let’s	write	the	testcode	in	test.ll	for	the	pattern	(A	|	(B	^	C))	^	((A	^	C)	^	B),
which	can	be	reduced	to	(A	&	(B	^	C)):

define	i32	@testfunc(i32	%x,	i32	%y,	i32	%z)	{

%xor1	=	xor	i32	%y,	%z

%or	=	or	i32	%x,	%xor1

%xor2	=	xor	i32	%x,	%z

%xor3	=	xor	i32	%xor2,	%y

%res	=	xor	i32	%or,	%xor3

ret	i32	%res

}

The	code	in	LLVM	for	the	handling	of	operators	such	as	“And”,	“Or”,	and	“Xor”	lies	in
the	lib/Transforms/InstCombine/InstCombineAndOrXor.cpp	file.

In	the	InstCombineAndOrXor.cpp	file,	in	the	InstCombiner::visitXor(BinaryOperator
&I)	function,	go	to	the	if	condition	If	(Op0I	&&	Op1I)	and	add	the	following	snippet	of
code:

If	(match(Op01,	m_Or(m_Xor(m_Value(B),	m_Value(C)),	m_Value(A)))

&&	match(Op1I,	m_Xor(m_Xor(m_Specific(A),	m_Specific(C)),	m_Specific(B))))	

{

		return	BinaryOperator::CreateAnd(A,	Builder->CreateXor(B,C));

}

As	it	is	quite	clear,	the	code	added	is	to	match	the	pattern	(A	|	(B	^	C))	^	((A	^	C)	^
B)	and	return	(A	&	(B	^	C))	when	matched.

To	test	the	code,	build	LLVM	and	run	the	instcombine	Pass	with	this	test	code	and	see	the
output.

$	opt	–instcombine	–S	test.ll

define	i32	@testfunc(i32	%x,	i32	%y,	i32	%z)	{

%1	=	xor	i32	%y,	%z

%res	=	and	i32	%1,	%x

ret	i32	%res

}

So	the	output	shows	that	now	only	one	xor	and	one	and	operation	is	required	instead	of
four	xor	and	one	or	earlier.

To	understand	and	add	more	transformations	you	can	look	into	the	source	code	in	the
InstCombine	folder.

Summary
So,	in	this	chapter,	we	looked	into	how	simple	transformations	can	be	applied	to	IR.	We
looked	into	the	opt	tool,	LLVM	Pass	infrastructure,	the	Passmanager	and	how	to	use
information	of	one	Pass	in	another	Pass.	We	ended	the	chapter	with	examples	of
instruction	simplification	and	instruction	combining.	In	the	next	chapter,	we	will	see	some
more	advanced	optimizations	like	Loop	Optimization,	Scalar	Evolution,	and	others,	where
we	will	operate	at	a	block	of	code	rather	than	individual	instructions.

Chapter	5.	Advanced	IR	Block
Transformations
In	the	previous	chapter,	we	have	gone	through	some	of	the	optimizations,	which	were
mainly	at	instruction	level.	In	this	chapter,	we	will	look	at	optimizations	on	block	level
where	we	will	be	optimizing	a	block	of	code	to	a	simpler	form,	which	makes	the	code
more	effective.	We	will	start	by	looking	at	how	loops	are	represented	in	LLVM,	use	the
concept	of	dominance	and	CFG	to	optimize	loops.	We	will	use	Loop	Simplification
(LoopSimplify)and	Loop	Invariant	Code	Motion	optimizations	for	loop	processing.	We
will	then	see	how	a	scalar	value	changes	during	program	execution	and	how	the	result	of
this	Scalar	Evolution	Optimization	can	be	used	in	other	optimizations.	Then	we	will
look	into	how	LLVM	represents	its	in	build	functions	called	as	LLVM	intrinsics.	Finally,
we	will	look	into	how	LLVM	deals	with	concepts	of	parallelism	by	understanding	its
approach	towards	vectorization.

In	this	chapter,	we	will	look	into	the	following	topics:

Loop	processing
Scalar	evolution
LLVM	intrinsics
Vectorization

Loop	processing
Before	getting	started	with	loop	processing	and	optimization,	we	must	have	a	little	heads
up	about	the	concepts	of	CFG	and	dominance	information.	A	CFG	is	the	control	flow
graph	of	the	program	that	gives	a	look	into	how	the	program	may	be	executed	through	the
various	basic	blocks.	By	dominance	information,	we	get	to	know	about	the	relation
between	the	various	basic	blocks	in	the	CFG.

In	a	CFG,	we	say	a	node	d	dominates	a	node	n	if	every	path	(from	the	input	towards
output)	that	passes	through	n	must	also	pass	through	d.	This	is	denoted	by	d	->	n.	The
graph	G	=	(V,	E),	where	V	is	the	set	of	basic	blocks	and	E	is	the	dominance	relation
defined	on	V,	is	called	dominator	tree.

Let’s	take	an	example	to	show	the	CFG	of	a	program	and	the	corresponding	dominator
tree.

Put	example	code	here:

void	fun()	{

		int	iter,	a,	b;

		for	(iter	=	0;	iter	<	10;	iter++)	{

				a	=	5;

				if	(iter	==	a)

						b	=	2;

				else

						b	=	5;

		}

}

The	CFG	for	the	preceding	code	looks	like	the	following:

From	what	you	have	learned	about	dominance	and	dominator	trees,	the	dominator	tree	for
the	preceding	CFG	looks	something	like	the	following:

The	first	figure	shows	the	CFG	of	the	preceding	code	and	the	next	figure	shows	the
dominator	tree	for	the	same	CFG.	We	have	numbered	each	of	the	CFG	components	and
we	can	see	that	2	dominates	3	in	the	CFG,	and	2	also	dominates	4,	5,	and	6.	3	dominates	4,
5,	and	6	and	is	the	immediate	dominator	of	these.	There	is	no	dominance	relation	between
4	and	5.	6	is	not	dominated	by	5	because	there	is	another	path	available	through	4	and	for
the	same	reasons,	4	does	not	dominate	6.

All	the	loop	optimizations	and	transformation	in	LLVM	are	derived	from	the	LoopPass
class	implemented	in	the	LoopPass.cpp	file	located	in	lib/Analysis.	The	LPPassManager
class	is	responsible	for	the	handling	of	all	LoopPasses.

The	most	important	class	to	get	started	with	loop	processing	is	the	LoopInfo	Class,	which
is	used	to	identify	the	natural	loops	in	the	code	and	to	know	the	depth	of	various	nodes	in
the	CFG.	Natural	loops	are	the	cyclic	structures	in	a	CFG.	To	define	a	natural	loop	in	a
CFG,	we	must	know	what	a	backedge	is:	it	is	an	edge	in	the	CFG	where	the	source
dominates	the	target.	A	natural	loop	can	be	defined	by	a	backedge	a->d	that	defines	a
subgraph	of	the	CFG,	where	d	is	the	header	node	and	it	contains	all	other	basic	blocks	that
can	reach	a	without	having	to	reach	d.

We	can	see	in	the	preceding	diagram	that	the	backedge	6->2	forms	a	natural	loop
consisting	of	the	nodes	2,	3,	4,	5,	and	6.

The	next	important	step	is	loop	simplification	that	transforms	the	loop	into	a	canonical

form,	which	includes	the	insertion	of	a	preheader	to	the	loop,	which	in	turn	ensures	that
there	is	a	single	entry	edge	to	the	loop	header	from	outside	the	loop.	It	also	inserts	loop
exit	blocks,	which	ensure	that	all	exit	blocks	from	the	loop	have	predecessors	only	from
within	the	loop.	These	insertion	of	pre-header	and	exit	blocks	help	in	later	loop
optimizations,	such	as	Loop	Independent	Code	Motion.

Loop	Simplification	also	ensures	that	the	loop	will	have	only	one	backedge,	that	is	if	the
loop	header	is	having	more	than	two	predecessors,	(from	the	pre	header	block	and
multiple	latches	to	the	loop)	we	adjust	only	this	loop	latch.	One	way	of	doing	this	is	by
inserting	a	new	block	which	is	the	target	of	all	the	backedges	and	make	this	new	block
jump	to	loop	header.	Let’s	take	a	look	at	how	a	loop	looks	after	Loop	Simplify	Pass.	We
will	be	able	to	see	that	a	preheader	node	is	inserted,	new	exit	blocks	are	created,	and	there
is	only	one	backedge.

Now,	after	getting	the	required	information	from	LoopInfo	and	simplifying	the	loop	to	a
canonical	form,	we	will	look	into	some	of	the	loop	optimizations.

One	of	the	main	loop	optimizations	is	Loop	Invariant	Code	Motion	(LICM)
optimization.	This	pass	tries	to	remove	as	much	code	from	the	body	of	the	loop	as
possible.	The	condition	for	removal	of	the	code	is	that	this	piece	of	code	is	invariant	inside
the	loop,	that	is	the	output	of	this	part	of	code	not	dependent	on	loop	execution	and	it	will
remain	same	in	every	iteration	of	the	loop.	This	is	done	by	moving	this	piece	of	code
either	in	the	preheader	block	or	moving	the	code	to	exit	blocks.	This	pass	is	implemented
in	the	lib/TransformsScalar/LICM.cpp	file.	If	we	look	into	the	code	of	the	loop,	we	see
it	requires	LoopInfo	and	LoopSimplify	passes	to	be	run	before	it.	Also,	it	needs	the
AliasAnalysis	information.	Alias	analysis	is	needed	to	move	loop	invariant	loads	and

calls	out	of	the	loop.	If	there	is	no	load	and	call	inside	the	loop	that	aliases	anything
stored,	we	can	move	these	out	of	the	loop.	This	also	helps	in	scalar	promotion	of	memory.

Let’s	look	at	an	example	to	see	how	LICM	is	getting	done.

Let’s	write	the	testcase	in	a	file	licm.ll:

$	cat	licm.ll

define	void	@func(i32	%i)	{

Entry:

								br	label	%Loop

Loop:

								%j	=	phi	i32	[0,	%Entry],	[%Val,	%Loop]

								%loopinvar	=	mul	i32	%i,	17

								%Val	=	add	i32	%j,	%loopinvar

								%cond	=	icmp	eq	i32	%Val,	0

								br	i1	%cond,	label	%Exit,	label	%Loop

Exit:												

								ret	void

}

This	testcase	has	a	loop	denoted	by	Loop	block	in	the	test	code	with	the	loop	condition
being	br	i1	%cond,	label	%Exit,	label	%Loop	(Latch	part	of	the	loop).	We	can	see	the
%j	value,	which	is	being	used	as	the	induction	variable	is	derived	after	using	the	phi
instruction.	Basically,	it	tells	to	choose	the	value	0	if	the	control	is	coming	from	the	Entry
block	and	%Val	if	the	control	is	coming	from	Loop	block.	In	this,	the	invariant	code	can	be
seen	as	%loopinvar	=	mul	i32	%i,	17,	as	%loopinvar	value	is	independent	of	the
iteration	of	loop	and	depends	on	the	function	argument	only.	So	when	we	run	the	LICM
pass,	we	expect	this	value	to	be	hoisted	out	of	the	loop,	thus	preventing	its	computation	in
every	iteration	of	the	loop.

Let’s	run	the	licm	pass	and	see	the	output:

$	opt	-licm	licm.ll	-o	licm.bc

$	llvm-dis	licm.bc	-o	licm_opt.ll

$	cat	licm_opt.ll

;	ModuleID	=	'licm.bc'

define	void	@func(i32	%i)	{

Entry:

		%loopinvar	=	mul	i32	%i,	17

		br	label	%Loop

Loop:																																													

;	preds	=	%Loop,	%Entry

		%j	=	phi	i32	[0,	%Entry],	[%Val,	%Loop]

		%Val	=	add	i32	%j,	%loopinvar

		%cond	=	icmp	eq	i32	%Val,	0

		br	i1	%cond,	label	%Exit,	label	%Loop

Exit:																																													

;	preds	=	%Loop

		ret	void

}

As	we	can	see	in	the	output,	the	calculation	%loopinvar	=	mul	i32	%i,	17	is	hoisted	out
of	the	loop,	which	is	the	expected	output.

We	have	many	other	loop	optimizations	such	as	Loop	Rotation,	Loop	Interchange,
Loop	Unswitch,	and	so	on.	The	source	codes	for	these	can	be	looked	under	the	LLVM
folder	lib/Transforms/Scalar	to	get	more	understanding	about	these	optimizations.	In
the	next	section,	we	will	see	the	concept	of	scalar	evolution.

Scalar	evolution
By	scalar	evolution,	we	mean	how	the	value	of	a	scalar	changes	in	a	program	with	the
execution	of	code.	We	look	at	a	particular	scalar	value	and	see	how	it	is	getting	derived,
what	all	other	elements	it	is	dependent	on,	whether	this	is	known	at	compile	time	or	not,
and	what	all	operations	are	being	performed.	We	need	to	look	into	a	block	of	code	rather
than	looking	into	individual	instructions.	A	scalar	value	is	build	up	from	two	elements,	a
variable	and	an	operation	of	constant	step.	The	variable	element	that	builds	up	this	scalar
value	is	unknown	at	compile	time	and	its	value	can	be	known	at	run	time	only.	The	other
element	is	the	constant	part.	These	elements	themselves	may	be	recursively	broken	into
other	elements	such	as	a	constant,	an	unknown	value	or	an	arithmetic	operation.

The	main	idea	here	is	to	look	at	complete	scalar	value	containing	the	unknown	part	at
compile	time	and	see	how	this	value	will	evolve	during	execution	and	try	to	use	this	for
optimization.	One	example	is	removing	a	redundant	value	for	which	the	scalar	evolution	is
similar	to	some	other	value	in	the	same	program.

In	LLVM,	we	can	use	scalar	evolution	to	analyze	code	that	contains	common	integer
arithmetic	operations.

In	LLVM	ScalarEvolution	class	is	implemented	in	include/llvm/Analysis,	which	is	a
LLVM	pass	and	can	be	used	analyze	scalar	expressions	in	a	loop.	It	is	able	to	recognize
general	induction	variables	(a	variable	in	loop	whose	value	is	a	function	of	loop	iteration
number)	and	represent	them	using	object	of	SCEV	class,	which	is	used	to	represent
analyzed	expression	in	a	program.	Using	this	analysis	trip	count	and	other	important
analysis	can	be	obtained.	This	scalar	evolution	analysis	is	mainly	used	in	induction
variable	substitution	and	strength	reduction	of	loops.

Let’s	take	an	example	now	and	run	the	scalar	evolution	pass	on	it	and	see	what	output	it
generates.

Write	a	testcase	scalevl.ll	with	a	loop	and	some	scalar	values	within	the	loop.

$	cat	scalevl.ll

define	void	@fun()	{

entry:

								br	label	%header

header:

								%i	=	phi	i32	[1,	%entry],	[%i.next,	%body]

								%cond	=	icmp	eq	i32	%i,	10

								br	i1	%cond,	label	%exit,	label	%body

body:

								%a	=	mul	i32	%i,	5

								%b	=	or	i32	%a,	1

								%i.next	=	add	i32	%i,	1

								br	label	%header

exit:								

								ret	void

}

In	this	test	case,	we	have	a	loop	consisting	of	header	and	body	blocks	with	%a	and	%b

being	the	scalars	in	loop	body	of	interest.	Let’s	run	the	scalar	evolution	pass	on	this	and
see	the	output:

$	opt	-analyze	-scalar-evolution	scalevl.ll

Printing	analysis	'Scalar	Evolution	Analysis'	for	function	'fun':

Classifying	expressions	for:	@fun

		%i	=	phi	i32	[1,	%entry],	[%i.next,	%body]

		-->		{1,+,1}<%header>	U:	[1,11)	S:	[1,11)				Exits:	10

		%a	=	mul	i32	%i,	5

		-->		{5,+,5}<%header>	U:	[5,51)	S:	[5,51)				Exits:	50

		%b	=	or	i32	%a,	1

		-->		%b	U:	[1,0)	S:	full-set																	Exits:	51

		%i.next	=	add	i32	%i,	1

		-->		{2,+,1}<%header>	U:	[2,12)	S:	[2,12)				Exits:	11

Determining	loop	execution	counts	for:	@fun

Loop	%header:	backedge-taken	count	is	9

Loop	%header:	max	backedge-taken	count	is	9

As	we	can	see,	the	output	of	scalar	evolution	pass	shows	the	range	of	values	for	a
particular	variable	(U	stands	for	unsigned	range	and	S	for	signed	range,	here	both	are
same)	and	the	exit	value,	the	value	in	that	variable	when	the	loop	runs	its	last	iteration.	For
example,	the	value	%i	has	the	range	as	[1,11),	that	is	the	starting	iteration	value	is	1	and
when	the	value	of	%i	becomes	11	the	condition	%cond	=	icmp	eq	i32	%i,	10	becomes
false	and	the	loop	breaks.	So,	the	the	value	of	%i	when	it	exited	the	loop	was	10,	which	is
denoted	by	Exits:	10	in	the	output.

The	value	in	the	form	of	{x,+,y}	representation,	such	as	{2,+,1},	represents	add
recurrence,	that	is	the	expressions	changing	value	during	loop	execution	where	x
represents	the	base	value	at	0th	iteration	and	y	represents	the	value	added	to	it	on	each
subsequent	iteration.

The	output	also	shows	the	number	of	times	the	loop	has	iterated	after	the	first	run.	Here,	it
shows	the	value	9	for	backedge-taken,	that	is	the	loop	has	run	10	times	in	total.	The	max
backedge-taken	value	is	the	least	value	which	can	never	be	less	than	the	backedge-taken
value,	which	here	is	9.

This	is	the	output	for	this	example,	you	can	try	some	other	test	cases	and	see	what	this
pass	outputs.

LLVM	intrinsics
An	intrinsic	function	is	a	function	built	in	to	the	compiler.	The	compiler	knows	how	to
best	implement	the	functionality	in	the	most	optimized	way	for	these	functions	and
replaces	with	a	set	of	machine	instruction	for	a	particular	backend.	Often,	the	code	for	the
function	is	inserted	inline	thus	avoiding	the	overhead	of	function	call	(In	many	cases,	we
do	call	the	library	function.	For	example,	for	the	functions	listed	in
http://llvm.org/docs/LangRef.html#standard-c-library-intrinsics	we	make	a	call	to	libc).
These	are	also	called	built-in	functions	for	other	compilers.

In	LLVM	these	intrinsics	are	introduced	during	code	optimization	at	IR	level	(Intrinsics
written	in	program	code	can	be	emitted	through	frontend	directly).	These	function	names
will	start	with	a	prefix	“llvm.“,	which	is	a	reserved	word	in	LLVM.	These	functions	are
always	external	and	a	user	cannot	specify	the	body	for	these	functions	in	his/her	code.	In
our	code,	we	can	only	call	these	intrinsic	functions.

In	this	section,	we	will	not	go	much	deep	into	details.	We	will	take	an	example	and	see
how	LLVM	optimizes	certain	part	of	code	with	its	own	intrinsic	functions.

Let’s	write	a	simple	code:

$	cat	intrinsic.cpp

int	func()

{

								int	a[5];

								for	(int	i	=	0;	i	!=	5;	++i)

																a[i]	=	0;

								return	a[0];

}

Now	use	Clang	to	generate	the	IR	file.	Using	the	command	given	below,	we	will	get	the
intrinsic.ll	file	that	contains	the	unoptimized	IR	without	any	intrinsic	function.

$	clang	-emit-llvm	-S	intrinsic.cpp

Now,	use	the	opt	tool	to	optimize	the	IR	with	O1	level	of	optimization.

$	opt	-O1	intrinsic.ll	-S	-o	-

;	ModuleID	=	'intrinsic.ll'

target	datalayout	=	"e-m:e-i64:64-f80:128-n8:16:32:64-S128"

target	triple	=	"x86_64-unknown-linux-gnu"

;	Function	Attrs:	nounwind	readnone	uwtable

define	i32	@_Z4funcv()	#0	{

		%a	=	alloca	[5	x	i32],	align	16

		%a2	=	bitcast	[5	x	i32]*	%a	to	i8*

		call	void	@llvm.memset.p0i8.i64(i8*	%a2,	i8	0,	i64	20,	i32	16,	i1	false)

		%1	=	getelementptr	inbounds	[5	x	i32],	[5	x	i32]*	%a,	i64	0,	i64	0

		%2	=	load	i32,	i32*	%1,	align	16

		ret	i32	%2

}

http://llvm.org/docs/LangRef.html#standard-c-library-intrinsics

;	Function	Attrs:	nounwind	argmemonly

declare	void	@llvm.memset.p0i8.i64(i8*	nocapture,	i8,	i64,	i32,	i1)	#1

The	important	optimization	to	be	noted	here	is	the	call	to	LLVM	intrinsic	function
llvm.memset.p0i8.i64	to	fill	the	array	with	value	0.	The	intrinsic	functions	may	be	used
to	implement	vectorization	and	parallelization	in	the	code,	leading	to	better	code
generation.	It	might	call	the	most	optimized	version	of	the	memset	call	from	the	libc
library	and	may	choose	to	completely	omit	this	function	if	there	is	no	usage	of	this.

The	first	argument	in	the	call	specifies	the	array	“a“,	that	is	the	destination	array	where	the
value	needs	to	be	filled.	The	second	argument	specifies	the	value	to	be	filled.	The	third
argument	to	the	call	is	specification	about	number	of	bytes	to	be	filled.	The	fourth
argument	specifies	the	alignment	of	destination	value.	The	last	argument	is	to	determine
whether	this	is	a	volatile	operation	or	not.

There	is	a	list	of	such	intrinsic	functions	in	LLVM,	a	list	of	which	can	be	found	at
http://llvm.org/docs/LangRef.html#intrinsic-functions.

http://llvm.org/docs/LangRef.html#intrinsic-functions

Vectorization
Vectorization	is	an	important	optimization	for	compilers	where	we	can	vectorize	code	to
execute	an	instruction	on	multiple	datasets	in	one	go.	Advance	target	architecture	typically
have	vector	registers	set	and	vector	instructions—where	broad	range	of	data	type
(typically	128/246	bit)	can	be	loaded	into	the	vector	registers	and	operations	can	be
performed	on	those	register	set,	performing	two,	four,	and	sometimes	eight	operations	at
the	same	time,	with	the	cost	of	one	scalar	operation.

There	are	two	types	of	vectorization	in	LLVM—Superword-Level	Parallelism	(SLP)
and	loop	vectorization.	Loop	vectorization	deals	with	vectorization	opportunities	in	a	loop,
while	SLP	vectorization	deals	with	vectorizing	straight-line	code	in	a	basic	block.

A	vector	instruction	performs	Single-instruction	multiple-data	(SIMD)	operations;	the
same	operation	on	multiple	data	lanes	(in	parallel).

Let’s	look	at	how	SLP	Vectorization	is	implemented	in	LLVM	infrastructure.

As	the	code	itself	attributes,	the	implementation	of	SLP	Vectorization	in	LLVM	is	inspired
by	the	work	described	in	the	paper	Loop-Aware	SLP	in	GCC	by	Ira	Rosen,	Dorit	Nuzman,
and	Ayal	Zaks.	LLVM	SLP	Vectorization	Pass	implements	the	Bottom	Up	SLP	vectorizer.
It	detects	consecutive	stores	that	can	be	put	together	into	vector-stores.	Next,	it	attempts	to
stores	that	can	be	put	together	into	vector-stores.	Next,	it	attempts	to	construct
vectorizable	tree	using	the	use-def	chains.	If	a	profitable	tree	was	found,	the	SLP
vectorizer	performs	vectorization	on	the	tree.

There	are	three	stages	to	SLP	Vectorization:

Identify	the	pattern	and	determine	if	it	is	a	valid	Vectorization	pattern
Determine	if	it	is	profitable	to	vectorize	the	code
If	step	1	and	2	are	true,	then	vectorize	the	code

Let’s	look	at	an	example:

Consider	addition	of	4	consecutive	elements	of	two	arrays	into	third	array.

int	a[4],	b[4],	c[4];

void	addsub()	{

a[0]	=	b[0]	+	c[0];

a[1]	=	b[1]	+	c[1];

a[2]	=	b[2]	+	c[2];

a[3]	=	b[3]	+	c[3];

}

The	IR	for	the	preceding	kind	of	expression	will	look	like	this:

;	ModuleID	=	'addsub.c'

@a	=	global	[4	x	i32]	zeroinitializer,	align	4

@b	=	global	[4	x	i32]	zeroinitializer,	align	4

@c	=	global	[4	x	i32]	zeroinitializer,	align	4

;	Function	Attrs:	nounwind

define	void	@addsub()	{

entry:

		%0	=	load	i32,	i32*	getelementptr	inbounds	([4	x	i32],	[4	x	i32]*	@b,	i32	

0,	i32	0)

		%1	=	load	i32,	i32*	getelementptr	inbounds	([4	x	i32],	[4	x	i32]*	@c,	i32	

0,	i32	0)

		%add	=	add	nsw	i32	%1,	%0

		store	i32	%add,	i32*	getelementptr	inbounds	([4	x	i32],	[4	x	i32]*	@a,	

i32	0,	i32	0)

		%2	=	load	i32,	i32*	getelementptr	inbounds	([4	x	i32],	[4	x	i32]*	@b,	i32	

0,	i32	1)

		%3	=	load	i32,	i32*	getelementptr	inbounds	([4	x	i32],	[4	x	i32]*	@c,	i32	

0,	i32	1)

		%add1	=	add	nsw	i32	%3,	%2

		store	i32	%add1,	i32*	getelementptr	inbounds	([4	x	i32],	[4	x	i32]*	@a,	

i32	0,	i32	1)

		%4	=	load	i32,	i32*	getelementptr	inbounds	([4	x	i32],	[4	x	i32]*	@b,	i32	

0,	i32	2)

		%5	=	load	i32,	i32*	getelementptr	inbounds	([4	x	i32],	[4	x	i32]*	@c,	i32	

0,	i32	2)

		%add2	=	add	nsw	i32	%5,	%4

		store	i32	%add2,	i32*	getelementptr	inbounds	([4	x	i32],	[4	x	i32]*	@a,	

i32	0,	i32	2)

		%6	=	load	i32,	i32*	getelementptr	inbounds	([4	x	i32],	[4	x	i32]*	@b,	i32	

0,	i32	3)

		%7	=	load	i32,	i32*	getelementptr	inbounds	([4	x	i32],	[4	x	i32]*	@c,	i32	

0,	i32	3)

		%add3	=	add	nsw	i32	%7,	%6

		store	i32	%add3,	i32*	getelementptr	inbounds	([4	x	i32],	[4	x	i32]*	@a,	

i32	0,	i32	3)

		ret	void

}

The	expression	tree	for	the	preceding	pattern	can	be	visualized	as	a	chain	of	stores	and
loads:

For	the	preceding	expression	tree,	the	bottom-up	SLP	Vectorization	first	constructs	a	chain
that	starts	with	a	store	instruction:

//	Use	the	bottom	up	slp	vectorizer	to	construct	chains	that	start

//	with	store	instructions.

	BoUpSLP	R(&F,	SE,	TTI,	TLI,	AA,	LI,	DT,	AC);

It	then	scans	the	tree	already	built	in	the	preceding	code	for	all	the	stores	in	the	given	basic
block:

				//	Scan	the	blocks	in	the	function	in	post	order.

				for	(auto	BB	:	post_order(&F.getEntryBlock()))	{

						//	Vectorize	trees	that	end	at	stores.

						if	(unsigned	count	=	collectStores(BB,	R))	{

								(void)count;

								DEBUG(dbgs()	<<	"SLP:	Found	"	<<	count	<<	"	stores	to	

vectorize.\n");

								Changed	|=	vectorizeStoreChains(R);

						}

						//	Vectorize	trees	that	end	at	reductions.

						Changed	|=	vectorizeChainsInBlock(BB,	R);

				}

The	collectStores()	function	collects	all	the	store	references.

unsigned	SLPVectorizer::collectStores(BasicBlock	*BB,	BoUpSLP	&R)	{

		unsigned	count	=	0;

		StoreRefs.clear();

		const	DataLayout	&DL	=	BB->getModule()->getDataLayout();

		for	(Instruction	&I	:	*BB)	{

				StoreInst	*SI	=	dyn_cast<StoreInst>(&I);

				if	(!SI)

						continue;

				//	Don't	touch	volatile	stores.

				if	(!SI->isSimple())

						continue;

				//	Check	that	the	pointer	points	to	scalars.

				Type	*Ty	=	SI->getValueOperand()->getType();

				if	(!isValidElementType(Ty))

						continue;

				//	Find	the	base	pointer.

				Value	*Ptr	=	GetUnderlyingObject(SI->getPointerOperand(),	DL);

				//	Save	the	store	locations.

				StoreRefs[Ptr].push_back(SI);

				count++;

		}

		return	count;

}

The	function	SLPVectorizer::vectorizeStoreChains()	has	three	steps	and	function
calls	to	each	three	steps:

bool	SLPVectorizer::vectorizeStoreChain(ArrayRef<Value	*>	Chain,

																																								int	CostThreshold,	BoUpSLP	&R,

																																								unsigned	VecRegSize)	{

			…	

			…

				R.buildTree(Operands);

				int	Cost	=	R.getTreeCost();

				DEBUG(dbgs()	<<	"SLP:	Found	cost="	<<	Cost	<<	"	for	VF="	<<	VF	<<	

"\n");

				if	(Cost	<	CostThreshold)	{

						DEBUG(dbgs()	<<	"SLP:	Decided	to	vectorize	cost="	<<	Cost	<<	"\n");

						R.vectorizeTree();

…	

…

}

The	first	step	is	to	identify	pattern.	The	function	buildTree()	subsequently	builds	up	the
tree	recursively	as	the	preceding	visualization.

void	BoUpSLP::buildTree(ArrayRef<Value	*>	Roots,

																								ArrayRef<Value	*>	UserIgnoreLst)	{

				…	

				…

				buildTree_rec(Roots,	0);

				…

				…	

}

For	our	given	example,	it	will	identify	that	all	the	store	operations	have	binary	addition
operations	as	their	operands:

void	BoUpSLP::buildTree_rec(ArrayRef<Value	*>	VL,	unsigned	Depth)	{

…

…

case	Instruction::Add:

newTreeEntry(VL,	true);

				DEBUG(dbgs()	<<	"SLP:	added	a	vector	of	bin	op.\n");

				//	Sort	operands	of	the	instructions	so	that	each	side	is	more	

				//	likely	to	have	the	sam	opcode	

				if	(isa<BinaryOperator>(VL0)	&&	VL0->isCommutative())	{

						ValueList	Left,	Right;

						reorderInputsAccordingToOpcode(VL,	Left,	Right);

						buildTree_rec(Left,	Depth	+	1);

						buildTree_rec(Right,	Depth	+	1);

						return;

				}

…

…

}

When	the	binary	operation	ADD	is	encountered,	it	again	recursively	builds	tree	(calling	the
same	function)	on	LHS	and	RHS	operands	of	the	ADD	operation,	which	in	our	case	are
both	Load:

case	Instruction::Load:	{

				//	Check	that	a	vectorized	load	would	load	the	same	memory	as	a	//	

scalar	load.

				//	For	example	we	don't	want	vectorize	loads	that	are	smaller	than	8	

bit.

				//	Even	though	we	have	a	packed	struct	{<i2,	i2,	i2,	i2>}	LLVM	treats

				//	loading/storing	it	as	an	i8	struct.	If	we	vectorize	loads/stores	

from

				//	such	a	struct	we	read/write	packed	bits	disagreeing	with	the

				//	unvectorized	version.

				const	DataLayout	&DL	=	F->getParent()->getDataLayout();

				Type	*ScalarTy	=	VL[0]->getType();

				if	(DL.getTypeSizeInBits(ScalarTy)	!=	

DL.getTypeAllocSizeInBits(ScalarTy))	{

						BS.cancelScheduling(VL);

						newTreeEntry(VL,	false);

						DEBUG(dbgs()	<<	"SLP:	Gathering	loads	of	non-packed	type.\n");

						return;

				}

				//	Check	if	the	loads	are	consecutive	or	of	we	need	to	swizzle	them.

				for	(unsigned	i	=	0,	e	=	VL.size()	-	1;	i	<	e;	++i)	{

						LoadInst	*L	=	cast<LoadInst>(VL[i]);

						if	(!L->isSimple())	{

								BS.cancelScheduling(VL);

								newTreeEntry(VL,	false);

								DEBUG(dbgs()	<<	"SLP:	Gathering	non-simple	loads.\n");

								return;

						}

						if	(!isConsecutiveAccess(VL[i],	VL[i	+	1],	DL))	{

								if	(VL.size()	==	2	&&	isConsecutiveAccess(VL[1],	VL[0],	DL))	{

										++NumLoadsWantToChangeOrder;

								}

								BS.cancelScheduling(VL);

								newTreeEntry(VL,	false);

								DEBUG(dbgs()	<<	"SLP:	Gathering	non-consecutive	loads.\n");

								return;

						}

				}

				++NumLoadsWantToKeepOrder;

				newTreeEntry(VL,	true);

				DEBUG(dbgs()	<<	"SLP:	added	a	vector	of	loads.\n");

				return;

		}

While	building	the	tree,	there	are	several	checks	that	validate	if	the	tree	can	be	vectorized.
For	example,	in	the	preceding	case,	when	loads	are	encountered	across	trees,	it	is	checked
whether	they	are	consecutive	loads	or	not.	In	our	expression	tree,	the	loads	across	trees	in
LHS—b[0],	b[1],	b[2],	and	b[3]	are	accessing	consecutive	memory	location.	Similarly,
loads	across	tress	in	RHS—c[0],	c[1],	c[2]	and	c[3]	are	accessing	consecutive	memory
location.	If	any	of	the	checks	fail	for	a	given	operation,	the	building	of	a	tree	is	aborted
and	code	is	not	vectorized.

After	the	pattern	is	identified	and	the	vector	tree	is	built,	the	next	step	is	to	get	the	cost	of
vectorizing	the	built	tree.	This	effectively	refers	to	the	cost	of	the	tree	if	it	is	vectorized
compared	to	the	cost	of	tree	in	current	scalar	form.	If	the	vector	cost	is	less	than	the	scalar
cost,	it	is	beneficial	to	vectorize	the	tree:

int	BoUpSLP::getTreeCost()	{

		int	Cost	=	0;

		DEBUG(dbgs()	<<	"SLP:	Calculating	cost	for	tree	of	size	"

															<<	VectorizableTree.size()	<<	".\n");

		//	We	only	vectorize	tiny	trees	if	it	is	fully	vectorizable.

		if	(VectorizableTree.size()	<	3	&&	!isFullyVectorizableTinyTree())	{

				if	(VectorizableTree.empty())	{

						assert(!ExternalUses.size()	&&	"We	should	not	have	any	external	

users");

				}

				return	INT_MAX;

		}

		unsigned	BundleWidth	=	VectorizableTree[0].Scalars.size();

		for	(unsigned	i	=	0,	e	=	VectorizableTree.size();	i	!=	e;	++i)	{

				int	C	=	getEntryCost(&VectorizableTree[i]);

				DEBUG(dbgs()	<<	"SLP:	Adding	cost	"	<<	C	<<	"	for	bundle	that	starts	

with	"	<<	*VectorizableTree[i].Scalars	[0]	<<	"	.	\n");

				Cost	+=	C;

		}

		SmallSet<Value	*,	16>	ExtractCostCalculated;

		int	ExtractCost	=	0;

		for	(UserList::iterator	I	=	ExternalUses.begin(),	E	=	ExternalUses.end();

							I	!=	E;	++I)	{

				//	We	only	add	extract	cost	once	for	the	same	scalar.

				if	(!ExtractCostCalculated.insert(I->Scalar).second)

						continue;

				//	Uses	by	ephemeral	values	are	free	(because	the	ephemeral	value	will	

be

				//	removed	prior	to	code	generation,	and	so	the	extraction	will	be

				//	removed	as	well).

				if	(EphValues.count(I->User))

						continue;

				VectorType	*VecTy	=	VectorType::get(I->Scalar->getType(),	BundleWidth);

				ExtractCost	+=

								TTI->getVectorInstrCost(Instruction::ExtractElement,	VecTy,	I-

>Lane);

		}

		Cost	+=	getSpillCost();

		DEBUG(dbgs()	<<	"SLP:	Total	Cost	"	<<	Cost	+	ExtractCost	<<	".\n");

		return	Cost	+	ExtractCost;

}

An	important	interface	to	focus	on	here	is	the	TargetTransformInfo	(TTI),	which
provides	access	to	the	codegen	interfaces	that	are	needed	for	IR-level	transformations.	In
our	SLP	Vectorization,	TTI	is	used	to	get	the	cost	of	the	vector	instruction	of	the	built
vector	tree:

int	BoUpSLP::getEntryCost(TreeEntry	*E)	{

…

…

case	Instruction::Store:	{

				//	We	know	that	we	can	merge	the	stores.	Calculate	the	cost.

				int	ScalarStCost	=	VecTy->getNumElements()	*

																							TTI->getMemoryOpCost(Instruction::Store,	ScalarTy,	

1,	0);

				int	VecStCost	=	TTI->getMemoryOpCost(Instruction::Store,	VecTy,	1,	0);

				return	VecStCost	-	ScalarStCost;

		}

…

…

}

In	the	same	function,	the	cost	of	vector	add	is	also	calculated:

case	Instruction::Add:		{

//	Calculate	the	cost	of	this	instruction.

				int	ScalarCost	=	0;

				int	VecCost	=	0;

				if	(Opcode	==	Instruction::FCmp	||	Opcode	==	Instruction::ICmp	||

								Opcode	==	Instruction::Select)	{

						VectorType	*MaskTy	=	VectorType::get(Builder.getInt1Ty(),	VL.size());

						ScalarCost	=

										VecTy->getNumElements()	*

										TTI->getCmpSelInstrCost(Opcode,	ScalarTy,	Builder.getInt1Ty());

						VecCost	=	TTI->getCmpSelInstrCost(Opcode,	VecTy,	MaskTy);

				}	else	{

						//	Certain	instructions	can	be	cheaper	to	vectorize	if	they	have

						//	a	constant	second	vector	operand.

						TargetTransformInfo::OperandValueKind	Op1VK	=

										TargetTransformInfo::OK_AnyValue;

						TargetTransformInfo::OperandValueKind	Op2VK	=

										TargetTransformInfo::OK_UniformConstantValue;

						TargetTransformInfo::OperandValueProperties	Op1VP	=

										TargetTransformInfo::OP_None;

						TargetTransformInfo::OperandValueProperties	Op2VP	=

										TargetTransformInfo::OP_None;

						//	If	all	operands	are	exactly	the	same	ConstantInt	then	set	the

						//	operand	kind	to	OK_UniformConstantValue.

						//	If	instead	not	all	operands	are	constants,	then	set	the	operand	

kind

						//	to	OK_AnyValue.	If	all	operands	are	constants	but	not	the	

					//	same,	then	set	the	operand	kind	to	OK_NonUniformConstantValue.

						ConstantInt	*CInt	=	nullptr;

						for	(unsigned	i	=	0;	i	<	VL.size();	++i)	{

								const	Instruction	*I	=	cast<Instruction>(VL[i]);

								if	(!isa<ConstantInt>(I->getOperand(1)))	{

										Op2VK	=	TargetTransformInfo::OK_AnyValue;

										break;

								}

								if	(i	==	0)	{

										CInt	=	cast<ConstantInt>(I->getOperand(1));

										continue;

								}

								if	(Op2VK	==	TargetTransformInfo::OK_UniformConstantValue	&&

												CInt	!=	cast<ConstantInt>(I->getOperand(1)))

										Op2VK	=	TargetTransformInfo::OK_NonUniformConstantValue;

						}

						//	FIXME:	Currently	cost	of	model	modification	for	division	by

						//	power	of	2	is	handled	only	for	X86.	Add	support	for	other	

						//	targets.

						if	(Op2VK	==	TargetTransformInfo::OK_UniformConstantValue	&&	CInt	&&

										CInt->getValue().isPowerOf2())

								Op2VP	=	TargetTransformInfo::OP_PowerOf2;

						ScalarCost	=	VecTy->getNumElements()	*

																		TTI->getArithmeticInstrCost(Opcode,	ScalarTy,	Op1VK,	

Op2VK,	Op1VP,	Op2VP);

						VecCost	=	TTI->getArithmeticInstrCost(Opcode,	VecTy,	Op1VK,	Op2VK,	

Op1VP,	Op2VP);

				}

				return	VecCost	-	ScalarCost;

		}

In	our	example,	the	total	cost	of	the	whole	expression	tree	comes	out	to	be	-12,	which
indicates	that	it	is	profitable	to	vectorize	the	tree.

Finally,	the	tree	is	vectorized	by	the	function	call	R.vectorizeTree()	on	the	tree:

Value	*BoUpSLP::vectorizeTree()	{

		…

		…

		vectorizeTree(&VectorizableTree[0]);

		…

		…

}

Lets	see	all	the	steps	the	Vectorization	process	follows	for	our	example.	Note	that	this	will
require	a	‘Debug‘	build	of	the	‘opt‘	tool.

$	opt	-S	-basicaa	-slp-vectorizer	-mtriple=aarch64-unknown-linuxgnu	-

mcpu=cortex-a57	addsub.ll	–debug

Features:

CPU:cortex-a57

SLP:	Analyzing	blocks	in	addsub.

SLP:	Found	4	stores	to	vectorize.

SLP:	Analyzing	a	store	chain	of	length	4.

SLP:	Analyzing	a	store	chain	of	length	4

SLP:	Analyzing	4	stores	at	offset	0

SLP:		bundle:			store	i32	%add,	i32*	getelementptr	inbounds	([4	x	i32],	[4	

x	i32]*	@a,	i32	0,	i32	0)

SLP:		initialize	schedule	region	to			store	i32	%add,	i32*	getelementptr	

inbounds	([4	x	i32],	[4	x	i32]*	@a,	i32	0,	i32	0)

SLP:		extend	schedule	region	end	to			store	i32	%add1,	i32*	getelementptr	

inbounds	([4	x	i32],	[4	x	i32]*	@a,	i32	0,	i32	1)

SLP:		extend	schedule	region	end	to			store	i32	%add2,	i32*	getelementptr	

inbounds	([4	x	i32],	[4	x	i32]*	@a,	i32	0,	i32	2)

SLP:		extend	schedule	region	end	to			store	i32	%add3,	i32*	getelementptr	

inbounds	([4	x	i32],	[4	x	i32]*	@a,	i32	0,	i32	3)

SLP:	try	schedule	bundle	[store	i32	%add,	i32*	getelementptr	inbounds	([4	

x	i32],	[4	x	i32]*	@a,	i32	0,	i32	0);		store	i32	%add1,	i32*	getelementptr	

inbounds	([4	x	i32],	[4	x	i32]*	@a,	i32	0,	i32	1);		store	i32	%add2,	i32*	

getelementptr	inbounds	([4	x	i32],	[4	x	i32]*	@a,	i32	0,	i32	2);		store	i32	

%add3,	i32*	getelementptr	inbounds	([4	x	i32],	[4	x	i32]*	@a,	i32	0,	i32	

3)]	in	block	entry

SLP:							update	deps	of	[store	i32	%add,	i32*	getelementptr	inbounds	

([4	x	i32],	[4	x	i32]*	@a,	i32	0,	i32	0);		store	i32	%add1,	i32*	

getelementptr	inbounds	([4	x	i32],	[4	x	i32]*	@a,	i32	0,	i32	1);		store	i32	

%add2,	i32*	getelementptr	inbounds	([4	x	i32],	[4	x	i32]*	@a,	i32	0,	i32	

2);		store	i32	%add3,	i32*	getelementptr	inbounds	([4	x	i32],	[4	x	i32]*	

@a,	i32	0,	i32	3)]

SLP:							update	deps	of	/			store	i32	%add1,	i32*	getelementptr	inbounds	

([4	x	i32],	[4	x	i32]*	@a,	i32	0,	i32	1)

SLP:							update	deps	of	/			store	i32	%add2,	i32*	getelementptr	inbounds	

([4	x	i32],	[4	x	i32]*	@a,	i32	0,	i32	2)

SLP:							update	deps	of	/			store	i32	%add3,	i32*	getelementptr	inbounds	

([4	x	i32],	[4	x	i32]*	@a,	i32	0,	i32	3)

SLP:					gets	ready	on	update:			store	i32	%add,	i32*	getelementptr	

inbounds	([4	x	i32],	[4	x	i32]*	@a,	i32	0,	i32	0)

SLP:	We	are	able	to	schedule	this	bundle.

SLP:	added	a	vector	of	stores.

SLP:		bundle:			%add	=	add	nsw	i32	%1,	%0

SLP:		extend	schedule	region	start	to			%add	=	add	nsw	i32	%1,	%0

SLP:	try	schedule	bundle	[%add	=	add	nsw	i32	%1,	%0;		%add1	=	add	nsw	i32	

%3,	%2;		%add2	=	add	nsw	i32	%5,	%4;		%add3	=	add	nsw	i32	%7,	%6]	in	block	

entry

SLP:							update	deps	of	[%add	=	add	nsw	i32	%1,	%0;		%add1	=	add	nsw	

i32	%3,	%2;		%add2	=	add	nsw	i32	%5,	%4;		%add3	=	add	nsw	i32	%7,	%6]

SLP:							update	deps	of	/			%add1	=	add	nsw	i32	%3,	%2

SLP:							update	deps	of	/			%add2	=	add	nsw	i32	%5,	%4

SLP:							update	deps	of	/			%add3	=	add	nsw	i32	%7,	%6

SLP:			schedule	[store	i32	%add,	i32*	getelementptr	inbounds	([4	x	i32],	

[4	x	i32]*	@a,	i32	0,	i32	0);		store	i32	%add1,	i32*	getelementptr	inbounds	

([4	x	i32],	[4	x	i32]*	@a,	i32	0,	i32	1);		store	i32	%add2,	i32*	

getelementptr	inbounds	([4	x	i32],	[4	x	i32]*	@a,	i32	0,	i32	2);		store	i32	

%add3,	i32*	getelementptr	inbounds	([4	x	i32],	[4	x	i32]*	@a,	i32	0,	i32	

3)]

SLP:				gets	ready	(def):	[%add	=	add	nsw	i32	%1,	%0;		%add1	=	add	nsw	

i32	%3,	%2;		%add2	=	add	nsw	i32	%5,	%4;		%add3	=	add	nsw	i32	%7,	%6]

SLP:	We	are	able	to	schedule	this	bundle.

SLP:	added	a	vector	of	bin	op.

SLP:		bundle:			%1	=	load	i32,	i32*	getelementptr	inbounds	([4	x	i32],	[4	x	

i32]*	@c,	i32	0,	i32	0)

SLP:		extend	schedule	region	start	to			%1	=	load	i32,	i32*	getelementptr	

inbounds	([4	x	i32],	[4	x	i32]*	@c,	i32	0,	i32	0)

SLP:	try	schedule	bundle	[%1	=	load	i32,	i32*	getelementptr	inbounds	([4	

x	i32],	[4	x	i32]*	@c,	i32	0,	i32	0);		%3	=	load	i32,	i32*	getelementptr	

inbounds	([4	x	i32],	[4	x	i32]*	@c,	i32	0,	i32	1);		%5	=	load	i32,	i32*	

getelementptr	inbounds	([4	x	i32],	[4	x	i32]*	@c,	i32	0,	i32	2);		%7	=	load	

i32,	i32*	getelementptr	inbounds	([4	x	i32],	[4	x	i32]*	@c,	i32	0,	i32	3)]	

in	block	entry

SLP:							update	deps	of	[%1	=	load	i32,	i32*	getelementptr	inbounds	([4	

x	i32],	[4	x	i32]*	@c,	i32	0,	i32	0);		%3	=	load	i32,	i32*	getelementptr	

inbounds	([4	x	i32],	[4	x	i32]*	@c,	i32	0,	i32	1);		%5	=	load	i32,	i32*	

getelementptr	inbounds	([4	x	i32],	[4	x	i32]*	@c,	i32	0,	i32	2);		%7	=	load	

i32,	i32*	getelementptr	inbounds	([4	x	i32],	[4	x	i32]*	@c,	i32	0,	i32	3)]

SLP:							update	deps	of	/			%3	=	load	i32,	i32*	getelementptr	inbounds	

([4	x	i32],	[4	x	i32]*	@c,	i32	0,	i32	1)

SLP:							update	deps	of	/			%5	=	load	i32,	i32*	getelementptr	inbounds	

([4	x	i32],	[4	x	i32]*	@c,	i32	0,	i32	2)

SLP:							update	deps	of	/			%7	=	load	i32,	i32*	getelementptr	inbounds	

([4	x	i32],	[4	x	i32]*	@c,	i32	0,	i32	3)

SLP:			schedule	[%add	=	add	nsw	i32	%1,	%0;		%add1	=	add	nsw	i32	%3,	%2;		

%add2	=	add	nsw	i32	%5,	%4;		%add3	=	add	nsw	i32	%7,	%6]

SLP:				gets	ready	(def):	[%1	=	load	i32,	i32*	getelementptr	inbounds	([4	

x	i32],	[4	x	i32]*	@c,	i32	0,	i32	0);		%3	=	load	i32,	i32*	getelementptr	

inbounds	([4	x	i32],	[4	x	i32]*	@c,	i32	0,	i32	1);		%5	=	load	i32,	i32*	

getelementptr	inbounds	([4	x	i32],	[4	x	i32]*	@c,	i32	0,	i32	2);		%7	=	load	

i32,	i32*	getelementptr	inbounds	([4	x	i32],	[4	x	i32]*	@c,	i32	0,	i32	3)]

SLP:	We	are	able	to	schedule	this	bundle.

SLP:	added	a	vector	of	loads.

SLP:		bundle:			%0	=	load	i32,	i32*	getelementptr	inbounds	([4	x	i32],	[4	x	

i32]*	@b,	i32	0,	i32	0)

SLP:		extend	schedule	region	start	to			%0	=	load	i32,	i32*	getelementptr	

inbounds	([4	x	i32],	[4	x	i32]*	@b,	i32	0,	i32	0)

SLP:	try	schedule	bundle	[%0	=	load	i32,	i32*	getelementptr	inbounds	([4	

x	i32],	[4	x	i32]*	@b,	i32	0,	i32	0);		%2	=	load	i32,	i32*	getelementptr	

inbounds	([4	x	i32],	[4	x	i32]*	@b,	i32	0,	i32	1);		%4	=	load	i32,	i32*	

getelementptr	inbounds	([4	x	i32],	[4	x	i32]*	@b,	i32	0,	i32	2);		%6	=	load	

i32,	i32*	getelementptr	inbounds	([4	x	i32],	[4	x	i32]*	@b,	i32	0,	i32	3)]	

in	block	entry

SLP:							update	deps	of	[%0	=	load	i32,	i32*	getelementptr	inbounds	([4	

x	i32],	[4	x	i32]*	@b,	i32	0,	i32	0);		%2	=	load	i32,	i32*	getelementptr	

inbounds	([4	x	i32],	[4	x	i32]*	@b,	i32	0,	i32	1);		%4	=	load	i32,	i32*	

getelementptr	inbounds	([4	x	i32],	[4	x	i32]*	@b,	i32	0,	i32	2);		%6	=	load	

i32,	i32*	getelementptr	inbounds	([4	x	i32],	[4	x	i32]*	@b,	i32	0,	i32	3)]

SLP:							update	deps	of	/			%2	=	load	i32,	i32*	getelementptr	inbounds	

([4	x	i32],	[4	x	i32]*	@b,	i32	0,	i32	1)

SLP:							update	deps	of	/			%4	=	load	i32,	i32*	getelementptr	inbounds	

([4	x	i32],	[4	x	i32]*	@b,	i32	0,	i32	2)

SLP:							update	deps	of	/			%6	=	load	i32,	i32*	getelementptr	inbounds	

([4	x	i32],	[4	x	i32]*	@b,	i32	0,	i32	3)

SLP:					gets	ready	on	update:			%0	=	load	i32,	i32*	getelementptr	inbounds	

([4	x	i32],	[4	x	i32]*	@b,	i32	0,	i32	0)

SLP:	We	are	able	to	schedule	this	bundle.

SLP:	added	a	vector	of	loads.

SLP:	Checking	user:		store	i32	%add,	i32*	getelementptr	inbounds	([4	x	

i32],	[4	x	i32]*	@a,	i32	0,	i32	0).

SLP:			Internal	user	will	be	removed:		store	i32	%add,	i32*	getelementptr	

inbounds	([4	x	i32],	[4	x	i32]*	@a,	i32	0,	i32	0).

SLP:	Checking	user:		store	i32	%add1,	i32*	getelementptr	inbounds	([4	x	

i32],	[4	x	i32]*	@a,	i32	0,	i32	1).

SLP:			Internal	user	will	be	removed:		store	i32	%add1,	i32*	getelementptr	

inbounds	([4	x	i32],	[4	x	i32]*	@a,	i32	0,	i32	1).

SLP:	Checking	user:		store	i32	%add2,	i32*	getelementptr	inbounds	([4	x	

i32],	[4	x	i32]*	@a,	i32	0,	i32	2).

SLP:			Internal	user	will	be	removed:		store	i32	%add2,	i32*	getelementptr	

inbounds	([4	x	i32],	[4	x	i32]*	@a,	i32	0,	i32	2).

SLP:	Checking	user:		store	i32	%add3,	i32*	getelementptr	inbounds	([4	x	

i32],	[4	x	i32]*	@a,	i32	0,	i32	3).

SLP:			Internal	user	will	be	removed:		store	i32	%add3,	i32*	getelementptr	

inbounds	([4	x	i32],	[4	x	i32]*	@a,	i32	0,	i32	3).

SLP:	Checking	user:		%add	=	add	nsw	i32	%1,	%0.

SLP:			Internal	user	will	be	removed:		%add	=	add	nsw	i32	%1,	%0.

SLP:	Checking	user:		%add1	=	add	nsw	i32	%3,	%2.

SLP:			Internal	user	will	be	removed:		%add1	=	add	nsw	i32	%3,	%2.

SLP:	Checking	user:		%add2	=	add	nsw	i32	%5,	%4.

SLP:			Internal	user	will	be	removed:		%add2	=	add	nsw	i32	%5,	%4.

SLP:	Checking	user:		%add3	=	add	nsw	i32	%7,	%6.

SLP:			Internal	user	will	be	removed:		%add3	=	add	nsw	i32	%7,	%6.

SLP:	Checking	user:		%add	=	add	nsw	i32	%1,	%0.

SLP:			Internal	user	will	be	removed:		%add	=	add	nsw	i32	%1,	%0.

SLP:	Checking	user:		%add1	=	add	nsw	i32	%3,	%2.

SLP:			Internal	user	will	be	removed:		%add1	=	add	nsw	i32	%3,	%2.

SLP:	Checking	user:		%add2	=	add	nsw	i32	%5,	%4.

SLP:			Internal	user	will	be	removed:		%add2	=	add	nsw	i32	%5,	%4.

SLP:	Checking	user:		%add3	=	add	nsw	i32	%7,	%6.

SLP:			Internal	user	will	be	removed:		%add3	=	add	nsw	i32	%7,	%6.

SLP:	Calculating	cost	for	tree	of	size	4.

SLP:	Adding	cost	-3	for	bundle	that	starts	with			store	i32	%add,	i32*	

getelementptr	inbounds	([4	x	i32],	[4	x	i32]*	@a,	i32	0,	i32	0)	.

SLP:	Adding	cost	-3	for	bundle	that	starts	with			%add	=	add	nsw	i32	%1,	%0	

.

SLP:	Adding	cost	-3	for	bundle	that	starts	with			%1	=	load	i32,	i32*	

getelementptr	inbounds	([4	x	i32],	[4	x	i32]*	@c,	i32	0,	i32	0)	.

SLP:	Adding	cost	-3	for	bundle	that	starts	with			%0	=	load	i32,	i32*	

getelementptr	inbounds	([4	x	i32],	[4	x	i32]*	@b,	i32	0,	i32	0)	.

SLP:	#LV:	0,	Looking	at			%add	=	add	nsw	i32	%1,	%0

SLP:	#LV:	1	add,	Looking	at			%1	=	load	i32,	i32*	getelementptr	inbounds	

([4	x	i32],	[4	x	i32]*	@c,	i32	0,	i32	0)

SLP:	#LV:	2		,	Looking	at			%0	=	load	i32,	i32*	getelementptr	inbounds	([4	

x	i32],	[4	x	i32]*	@b,	i32	0,	i32	0)

SLP:	SpillCost=0

SLP:	Total	Cost	-12.

SLP:	Found	cost=-12	for	VF=4

SLP:	Decided	to	vectorize	cost=-12

SLP:	schedule	block	entry

SLP:				initially	in	ready	list:			store	i32	%add,	i32*	getelementptr	

inbounds	([4	x	i32],	[4	x	i32]*	@a,	i32	0,	i32	0)

SLP:			schedule	[store	i32	%add,	i32*	getelementptr	inbounds	([4	x	i32],	

[4	x	i32]*	@a,	i32	0,	i32	0);		store	i32	%add1,	i32*	getelementptr	inbounds	

([4	x	i32],	[4	x	i32]*	@a,	i32	0,	i32	1);		store	i32	%add2,	i32*	

getelementptr	inbounds	([4	x	i32],	[4	x	i32]*	@a,	i32	0,	i32	2);		store	i32	

%add3,	i32*	getelementptr	inbounds	([4	x	i32],	[4	x	i32]*	@a,	i32	0,	i32	

3)]

SLP:				gets	ready	(def):	[%add	=	add	nsw	i32	%1,	%0;		%add1	=	add	nsw	

i32	%3,	%2;		%add2	=	add	nsw	i32	%5,	%4;		%add3	=	add	nsw	i32	%7,	%6]

SLP:			schedule	[%add	=	add	nsw	i32	%1,	%0;		%add1	=	add	nsw	i32	%3,	%2;		

%add2	=	add	nsw	i32	%5,	%4;		%add3	=	add	nsw	i32	%7,	%6]

SLP:				gets	ready	(def):	[%1	=	load	i32,	i32*	getelementptr	inbounds	([4	

x	i32],	[4	x	i32]*	@c,	i32	0,	i32	0);		%3	=	load	i32,	i32*	getelementptr	

inbounds	([4	x	i32],	[4	x	i32]*	@c,	i32	0,	i32	1);		%5	=	load	i32,	i32*	

getelementptr	inbounds	([4	x	i32],	[4	x	i32]*	@c,	i32	0,	i32	2);		%7	=	load	

i32,	i32*	getelementptr	inbounds	([4	x	i32],	[4	x	i32]*	@c,	i32	0,	i32	3)]

SLP:				gets	ready	(def):	[%0	=	load	i32,	i32*	getelementptr	inbounds	([4	

x	i32],	[4	x	i32]*	@b,	i32	0,	i32	0);		%2	=	load	i32,	i32*	getelementptr	

inbounds	([4	x	i32],	[4	x	i32]*	@b,	i32	0,	i32	1);		%4	=	load	i32,	i32*	

getelementptr	inbounds	([4	x	i32],	[4	x	i32]*	@b,	i32	0,	i32	2);		%6	=	load	

i32,	i32*	getelementptr	inbounds	([4	x	i32],	[4	x	i32]*	@b,	i32	0,	i32	3)]

SLP:			schedule	[%7	=	load	i32,	i32*	getelementptr	inbounds	([4	x	i32],	

[4	x	i32]*	@c,	i32	0,	i32	0);		%6	=	load	i32,	i32*	getelementptr	inbounds	

([4	x	i32],	[4	x	i32]*	@c,	i32	0,	i32	1);		%5	=	load	i32,	i32*	

getelementptr	inbounds	([4	x	i32],	[4	x	i32]*	@c,	i32	0,	i32	2);		%4	=	load	

i32,	i32*	getelementptr	inbounds	([4	x	i32],	[4	x	i32]*	@c,	i32	0,	i32	3)]

SLP:			schedule	[%3	=	load	i32,	i32*	getelementptr	inbounds	([4	x	i32],	

[4	x	i32]*	@b,	i32	0,	i32	0);		%2	=	load	i32,	i32*	getelementptr	inbounds	

([4	x	i32],	[4	x	i32]*	@b,	i32	0,	i32	1);		%1	=	load	i32,	i32*	

getelementptr	inbounds	([4	x	i32],	[4	x	i32]*	@b,	i32	0,	i32	2);		%0	=	load	

i32,	i32*	getelementptr	inbounds	([4	x	i32],	[4	x	i32]*	@b,	i32	0,	i32	3)]

SLP:	Extracting	0	values	.

SLP:			Erasing	scalar:		store	i32	%add,	i32*	getelementptr	inbounds	([4	x	

i32],	[4	x	i32]*	@a,	i32	0,	i32	0).

SLP:			Erasing	scalar:		store	i32	%add1,	i32*	getelementptr	inbounds	([4	x	

i32],	[4	x	i32]*	@a,	i32	0,	i32	1).

SLP:			Erasing	scalar:		store	i32	%add2,	i32*	getelementptr	inbounds	([4	x	

i32],	[4	x	i32]*	@a,	i32	0,	i32	2).

SLP:			Erasing	scalar:		store	i32	%add3,	i32*	getelementptr	inbounds	([4	x	

i32],	[4	x	i32]*	@a,	i32	0,	i32	3).

SLP:			Erasing	scalar:		%add	=	add	nsw	i32	%8,	%3.

SLP:			Erasing	scalar:		%add1	=	add	nsw	i32	%7,	%2.

SLP:			Erasing	scalar:		%add2	=	add	nsw	i32	%6,	%1.

SLP:			Erasing	scalar:		%add3	=	add	nsw	i32	%5,	%0.

SLP:			Erasing	scalar:		%8	=	load	i32,	i32*	getelementptr	inbounds	([4	x	

i32],	[4	x	i32]*	@c,	i32	0,	i32	0).

SLP:			Erasing	scalar:		%7	=	load	i32,	i32*	getelementptr	inbounds	([4	x	

i32],	[4	x	i32]*	@c,	i32	0,	i32	1).

SLP:			Erasing	scalar:		%6	=	load	i32,	i32*	getelementptr	inbounds	([4	x	

i32],	[4	x	i32]*	@c,	i32	0,	i32	2).

SLP:			Erasing	scalar:		%5	=	load	i32,	i32*	getelementptr	inbounds	([4	x	

i32],	[4	x	i32]*	@c,	i32	0,	i32	3).

SLP:			Erasing	scalar:		%3	=	load	i32,	i32*	getelementptr	inbounds	([4	x	

i32],	[4	x	i32]*	@b,	i32	0,	i32	0).

SLP:			Erasing	scalar:		%2	=	load	i32,	i32*	getelementptr	inbounds	([4	x	

i32],	[4	x	i32]*	@b,	i32	0,	i32	1).

SLP:			Erasing	scalar:		%1	=	load	i32,	i32*	getelementptr	inbounds	([4	x	

i32],	[4	x	i32]*	@b,	i32	0,	i32	2).

SLP:			Erasing	scalar:		%0	=	load	i32,	i32*	getelementptr	inbounds	([4	x	

i32],	[4	x	i32]*	@b,	i32	0,	i32	3).

SLP:	Optimizing	0	gather	sequences	instructions.

SLP:	vectorized	"addsub"

The	final	vectorized	output	is:

;	ModuleID	=	'addsub.ll'

target	triple	=	"aarch64-unknown-linuxgnu"

@a	=	global	[4	x	i32]	zeroinitializer,	align	4

@b	=	global	[4	x	i32]	zeroinitializer,	align	4

@c	=	global	[4	x	i32]	zeroinitializer,	align	4

define	void	@addsub()		{

entry:

		%0	=	load	<4	x	i32>,	<4	x	i32>*	bitcast	([4	x	i32]*	@b	to	<4	x	i32>*),	

align	4

		%1	=	load	<4	x	i32>,	<4	x	i32>*	bitcast	([4	x	i32]*	@c	to	<4	x	i32>*),	

align	4

		%2	=	add	nsw	<4	x	i32>	%1,	%0

		store	<4	x	i32>	%2,	<4	x	i32>*	bitcast	([4	x	i32]*	@a	to	<4	x	i32>*),	

align	4

		ret	void

}

Summary
In	this	chapter,	we	concluded	the	optimizer	part	of	the	compiler	where	we	had	seen	block
level	optimizations.	We	took	the	examples	of	loop	optimization,	Scalar	Evolution,
Vectorization,	and	LLVM	Intrinsic	functions.	We	also	saw	how	SLP	Vectorization	is
handled	in	LLVM.	However,	there	are	many	other	such	optimizations	that	you	can	look
into	and	get	a	hold	of.

In	the	next	chapter,	we	will	see	how	this	IR	is	converted	to	Directed	Acyclic	Graph.	We
have	some	optimizations	at	selectionDAG	level	as	well,	which	we	will	take	a	look	at.

Chapter	6.	IR	to	Selection	DAG	phase
Until	the	previous	chapter,	we	saw	how	a	frontend	language	can	be	converted	to	LLVM
IR.	We	also	saw	how	IR	can	be	transformed	into	more	optimized	code.	After	a	series	of
analysis	and	transformation	passes,	the	final	IR	is	the	most	optimized	machine
independent	code.	However,	the	IR	is	still	an	abstract	representation	of	the	actual	machine
code.	The	compiler	has	to	generate	target	architecture	code	for	execution.

LLVM	uses	DAG—a	directed	acyclic	graph	representation	for	code	generation.	The	idea
is	to	convert	IR	into	a	SelectionDAG	and	then	go	over	a	series	of	phases—DAG	combine,
legalization,	instruction	selection,	instruction	scheduling,	etc—to	finally	allocate	registers
and	emit	machine	code.	Note	that	register	allocation	and	instruction	scheduling	take	place
in	an	intertwined	manner.

We	are	going	to	cover	following	topics	in	this	chapter:

Converting	IR	to	selectionDAG
Legalizing	selectionDAG
Optimizing	selectionDAG
Instruction	selection
Scheduling	and	emitting	machine	instructions
Register	allocation
Code	emission

Converting	IR	to	selectionDAG
An	IR	instruction	can	be	represented	by	an	SDAG	node.	The	whole	set	of	instructions	thus
forms	an	interconnected	directed	acyclic	graph,	with	each	node	corresponding	to	an	IR
instruction.

For	example,	consider	the	following	LLVM	IR:

$	cat	test.ll

define	i32	@test(i32	%a,	i32	%b,	i32	%c)	{

%add	=	add	nsw	i32	%a,	%b

%div	=	sdiv	i32	%add,	%c

ret	i32	%div

}

LLVM	provides	a	SelectionDAGBuilder	interface	to	create	DAG	nodes	corresponding	to
IR	instructions.	Consider	the	binary	operation:

	%add	=	add	nsw	i32	%a,	%b

The	following	function	is	called	when	the	given	IR	is	encountered:

void	SelectionDAGBuilder::visit(unsigned	Opcode,	const	User	&I)	{

		//	Note:	this	doesn't	use	InstVisitor,	because	it	has	to	work	with

		//	ConstantExpr's	in	addition	to	instructions.

		switch	(Opcode)	{

		default:	llvm_unreachable("Unknown	instruction	type	encountered!");

				//	Build	the	switch	statement	using	the	Instruction.def	file.

#define	HANDLE_INST(NUM,	OPCODE,	CLASS)	\

				case	Instruction::OPCODE:	visit##OPCODE((const	CLASS&)I);	break;

#include	"llvm/IR/Instruction.def"

		}

}

Depending	on	the	opcode—which	is	Add	here—the	corresponding	visit	function	is
invoked.	In	this	case,	visitAdd()	is	invoked,	which	further	invokes	the	visitBinary()
function.	The	visitBinary()	function	is	as	follows:

void	SelectionDAGBuilder::visitBinary(const	User	&I,	unsigned	OpCode)	{

		SDValue	Op1	=	getValue(I.getOperand(0));

		SDValue	Op2	=	getValue(I.getOperand(1));

		bool	nuw	=	false;

		bool	nsw	=	false;

		bool	exact	=	false;

		FastMathFlags	FMF;

		if	(const	OverflowingBinaryOperator	*OFBinOp	=

										dyn_cast<const	OverflowingBinaryOperator>(&I))	{

				nuw	=	OFBinOp->hasNoUnsignedWrap();

				nsw	=	OFBinOp->hasNoSignedWrap();

		}

		if	(const	PossiblyExactOperator	*ExactOp	=

										dyn_cast<const	PossiblyExactOperator>(&I))

				exact	=	ExactOp->isExact();

		if	(const	FPMathOperator	*FPOp	=	dyn_cast<const	FPMathOperator>(&I))

				FMF	=	FPOp->getFastMathFlags();

		SDNodeFlags	Flags;

		Flags.setExact(exact);

		Flags.setNoSignedWrap(nsw);

		Flags.setNoUnsignedWrap(nuw);

		if	(EnableFMFInDAG)	{

				Flags.setAllowReciprocal(FMF.allowReciprocal());

				Flags.setNoInfs(FMF.noInfs());

				Flags.setNoNaNs(FMF.noNaNs());

				Flags.setNoSignedZeros(FMF.noSignedZeros());

				Flags.setUnsafeAlgebra(FMF.unsafeAlgebra());

		}

		SDValue	BinNodeValue	=	DAG.getNode(OpCode,	getCurSDLoc(),	

Op1.getValueType(),	Op1,	Op2,	&Flags);

		setValue(&I,	BinNodeValue);

}

This	function	takes	two	operands	of	the	binary	operator	from	IR	and	stores	them	into
SDValue	type.	Then	it	invokes	the	DAG.getNode()	function	with	opcode	of	the	binary
operator.	This	results	in	formation	of	a	DAG	node,	which	somewhat	looks	like	the
following:

The	operands	0	and	1	are	load	DAG	nodes.

Consider	the	IR:

%div	=	sdiv	i32	%add,	%c

On	encountering	the	sdiv	instruction,	the	function	visitSDiv()	is	invoked.

void	SelectionDAGBuilder::visitSDiv(const	User	&I)	{

		SDValue	Op1	=	getValue(I.getOperand(0));

		SDValue	Op2	=	getValue(I.getOperand(1));

		SDNodeFlags	Flags;

		Flags.setExact(isa<PossiblyExactOperator>(&I)	&&

																	cast<PossiblyExactOperator>(&I)->isExact());

		setValue(&I,	DAG.getNode(ISD::SDIV,	getCurSDLoc(),	Op1.getValueType(),	

Op1,	Op2,	&Flags));

}

Similar	to	visitBinary(),	this	function	also	stores	the	two	operands	into	SDValue	gets	a
DAG	node	with	ISD::SDIV	as	its	operator.	The	node	looks	like	the	following:

In	our	IR,	the	operand	0	is	%add.	Operand	1	is	%c,	which	is	passed	as	an	argument	to	the
function,	which	transforms	to	a	load	node	when	converting	IR	to	SelectionDAG.	For
implementation	of	Load	DAG	node,	go	through	the	visitLoad()	function	in	the
lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp	file.

After	visiting	all	the	IR	instructions	mentioned	earlier,	finally	the	IR	is	converted	to
SelectionDAG	as	follows:

In	the	preceding	diagram,	note	the	following:

Black	arrows	mean	data	flow	dependency
Red	arrows	mean	glue	dependency
Blue	dashed	arrows	mean	chain	dependency

Glue	prevents	the	two	nodes	from	being	broken	up	during	scheduling.	Chain	dependencies
prevent	nodes	with	side	effects.	A	data	dependency	indicates	when	an	instruction	depends
on	the	result	of	a	previous	instruction.

Legalizing	SelectionDAG
In	the	preceding	topic,	we	saw	how	an	IR	is	converted	to	SelectionDAG.	The	whole
process	didn’t	involve	any	knowledge	of	target	architecture	for	which	we	are	trying	to
generate	code.	A	DAG	node	might	be	illegal	for	the	given	target	architecture.	For
example,	the	X86	architecture	doesn’t	support	the	sdiv	instruction.	Instead,	it	supports
sdivrem	instruction.	This	target	specific	information	is	conveyed	to	the	SelectionDAG
phase	by	the	TargetLowering	interface.	Targets	implement	this	interface	to	describe	how
LLVM	IR	instructions	should	be	lowered	to	legal	SelectionDAG	operations.

In	our	IR	case,	we	need	to	‘expand’	the	sdiv	instruction	to	'sdivrem'	instruction.	In	the
function	void	SelectionDAGLegalize::LegalizeOp(SDNode	*Node),	the
TargetLowering::Expand	case	is	encountered,	which	invokes	the	ExpandNode()	function
call	on	that	particular	node.

void	SelectionDAGLegalize::LegalizeOp(SDNode	*Node){

…

…

case	TargetLowering::Expand:

						ExpandNode(Node);

						return;

…

…

}

This	function	expands	SDIV	into	the	SDIVREM	node:

case	ISD::SDIV:	{

				bool	isSigned	=	Node->getOpcode()	==	ISD::SDIV;

				unsigned	DivRemOpc	=	isSigned	?	ISD::SDIVREM	:	ISD::UDIVREM;

				EVT	VT	=	Node->getValueType(0);

				SDVTList	VTs	=	DAG.getVTList(VT,	VT);

				if	(TLI.isOperationLegalOrCustom(DivRemOpc,	VT)	||

								(isDivRemLibcallAvailable(Node,	isSigned,	TLI)	&&

									useDivRem(Node,	isSigned,	true)))

						Tmp1	=	DAG.getNode(DivRemOpc,	dl,	VTs,	Node->getOperand(0),

																									Node->getOperand(1));

				else	if	(isSigned)

						Tmp1	=	ExpandIntLibCall(Node,	true,

																														RTLIB::SDIV_I8,

																														RTLIB::SDIV_I16,	RTLIB::SDIV_I32,

																														RTLIB::SDIV_I64,	RTLIB::SDIV_I128);

				else

						Tmp1	=	ExpandIntLibCall(Node,	false,

																														RTLIB::UDIV_I8,

																														RTLIB::UDIV_I16,	RTLIB::UDIV_I32,

																														RTLIB::UDIV_I64,	RTLIB::UDIV_I128);

				Results.push_back(Tmp1);

				break;

		}

Finally,	after	legalization,	the	node	becomes	ISD::SDIVREM:

Thus	the	above	instruction	has	been	‘legalized‘	mapping	to	the	instruction	supported	on
the	target	architecture.	What	we	saw	above	was	an	example	of	expand	legalization.	There
are	two	other	types	of	legalization—promotion	and	custom.	A	promotion	promotes	one
type	to	a	larger	type.	A	custom	legalization	involves	target-specific	hook	(maybe	a	custom
operation—majorly	seen	with	IR	intrinsic).	We	leave	it	to	the	readers	to	explore	these
more	in	the	CodeGen	phase.

Optimizing	SelectionDAG
After	converting	the	IR	into	SelectionDAG,	many	opportunities	may	arise	to	optimize	the
DAG	itself.	These	optimization	takes	place	in	the	DAGCombiner	phase.	These	opportunities
may	arise	due	to	set	of	architecture	specific	instructions.

Let’s	take	an	example:

#include	<arm_neon.h>

unsigned	hadd(uint32x4_t	a)	{

		return	a[0]	+	a[1]	+	a[2]	+	a[3];

}

The	preceding	example	in	IR	looks	like	the	following:

define	i32	@hadd(<4	x	i32>	%a)	nounwind	{

		%vecext	=	extractelement	<4	x	i32>	%a,	i32	3

		%vecext1	=	extractelement	<4	x	i32>	%a,	i32	2

		%add	=	add	i32	%vecext,	%vecext1

		%vecext2	=	extractelement	<4	x	i32>	%a,	i32	1

		%add3	=	add	i32	%add,	%vecext2

		%vecext4	=	extractelement	<4	x	i32>	%a,	i32	0

		%add5	=	add	i32	%add3,	%vecext4

		ret	i32	%add5

}

The	example	is	basically	extracting	single	element	from	a	vector	of	<4xi32>	and	adding
each	element	of	the	vector	to	give	a	scalar	result.

Advanced	architectures	such	as	ARM	has	one	single	instruction	to	do	the	preceding
operation—adding	across	single	vector.	The	SDAG	needs	to	be	combined	into	a	single
DAG	node	by	identifying	the	preceding	pattern	in	SelectionDAG.

This	can	be	done	while	selecting	instruction	in	AArch64DAGToDAGISel.

	SDNode	*AArch64DAGToDAGISel::Select(SDNode	*Node)	{

…

…

		case	ISD::ADD:	{

					if	(SDNode	*I	=	SelectMLAV64LaneV128(Node))

							return	I;

				if	(SDNode	*I	=	SelectADDV(Node))

						return	I;

					break;

		}

}

We	define	the	SelectADDV()	function	as	follows:

SDNode	*AArch64DAGToDAGISel::SelectADDV(SDNode	*N)	{

		if	(N->getValueType(0)	!=	MVT::i32)

				return	nullptr;

		SDValue	SecondAdd;

		SDValue	FirstExtr;

		if	(!checkVectorElemAdd(N,	SecondAdd,	FirstExtr))

				return	nullptr;

		SDValue	Vector	=	FirstExtr.getOperand(0);

		if	(Vector.getValueType()	!=	MVT::v4i32)

				return	nullptr;

		uint64_t	LaneMask	=	0;

		ConstantSDNode	*LaneNode	=	cast<ConstantSDNode>(FirstExtr-

>getOperand(1));

		LaneMask	|=	1	<<	LaneNode->getZExtValue();

		SDValue	ThirdAdd;

		SDValue	SecondExtr;

		if	(!checkVectorElemAdd(SecondAdd.getNode(),	ThirdAdd,	SecondExtr))

				return	nullptr;

		if	(Vector	!=	SecondExtr.getOperand(0))

				return	nullptr;

		ConstantSDNode	*LaneNode2	=	cast<ConstantSDNode>(SecondExtr-

>getOperand(1));

		LaneMask	|=	1	<<	LaneNode2->getZExtValue();

		SDValue	LHS	=	ThirdAdd.getOperand(0);

		SDValue	RHS	=	ThirdAdd.getOperand(1);

		if	(LHS.getOpcode()	!=	ISD::EXTRACT_VECTOR_ELT	||

						RHS.getOpcode()	!=	ISD::EXTRACT_VECTOR_ELT	||

						LHS.getOperand(0)	!=	Vector	||

						RHS.getOperand(0)	!=	Vector)

				return	nullptr;

		ConstantSDNode	*LaneNode3	=	cast<ConstantSDNode>(LHS->getOperand(1));

		LaneMask	|=	1	<<	LaneNode3->getZExtValue();

		ConstantSDNode	*LaneNode4	=	cast<ConstantSDNode>(RHS->getOperand(1));

		LaneMask	|=	1	<<	LaneNode4->getZExtValue();

		if	(LaneMask	!=	0x0F)

				return	nullptr;

		return	CurDAG->getMachineNode(AArch64::ADDVv4i32v,	SDLoc(N),	MVT::i32,

																																Vector);

}

Note	that	we	have	defined	a	helper	function	checkVectorElemAdd()	earlier	to	check	the
chain	of	add	selection	DAG	nodes.

static	bool	checkVectorElemAdd(SDNode	*N,	SDValue	&Add,	SDValue	&Extr)	{

		SDValue	Op0	=	N->getOperand(0);

		SDValue	Op1	=	N->getOperand(1);

		const	unsigned	Opc0	=	Op0->getOpcode();

		const	unsigned	Opc1	=	Op1->getOpcode();

		const	bool	AddLeft		=	(Opc0	==	ISD::ADD	&&	Opc1	==	

ISD::EXTRACT_VECTOR_ELT);

		const	bool	AddRight	=	(Opc0	==	ISD::EXTRACT_VECTOR_ELT	&&	Opc1	==	

ISD::ADD);

		if	(!(AddLeft	||	AddRight))

				return	false;

		Add		=	AddLeft	?	Op0	:	Op1;

		Extr	=	AddLeft	?	Op1	:	Op0;

		return	true;

}

Let’s	see	how	this	affects	the	code	generation:

$	llc	-mtriple=aarch64-linux-gnu	-verify-machineinstrs	hadd.ll

Before	the	preceding	code,	the	final	code	generated	will	be	as	follows:

		mov		w8,	v0.s[3]

		mov		w9,	v0.s[2]

		add		w8,	w8,	w9

		mov		w9,	v0.s[1]

		add		w8,	w8,	w9

		fmov		w9,	s0

		add		w0,	w8,	w9

		ret

Clearly,	the	preceding	code	is	a	scalar	code.	After	adding	the	preceding	patch	and
compiling,	the	code	generated	will	be	as	follows:

		addv		s0,	v0.4s

		fmov		w0,	s0

		ret

Instruction	Selection
The	SelectionDAG	at	this	phase	is	optimized	and	legalized.	However,	the	instructions	are
still	not	in	machine	code	form.	These	instructions	need	to	be	mapped	to	architecture-
specific	instructions	in	the	SelectionDAG	itself.	The	TableGen	class	helps	select	target-
specific	instructions.

The	CodeGenAndEmitDAG()	function	calls	the	DoInstructionSelection()	function	that
visits	each	DAG	node	and	calls	the	Select()	function	for	each	node.	The	Select()
function	is	the	main	hook	targets	implement	to	select	a	node.	The	Select()	function	is	a
virtual	method	to	be	implemented	by	the	targets.

For	consideration,	assume	our	target	architecture	is	X86.	The
X86DAGToDAGISel::Select()	function	intercepts	some	nodes	for	manual	matching,	but
delegates	the	bulk	of	the	work	to	the	X86DAGToDAGISel::SelectCode()	function.	The
X86DAGToDAGISel::SelectCode()	function	is	auto	generated	by	TableGen.	It	contains	the
matcher	table,	followed	by	a	call	to	the	generic	SelectionDAGISel::SelectCodeCommon()
function,	passing	it	the	table.

SDNode	*ResNode	=	SelectCode(Node);

For	example,	consider	the	following:

$	cat	test.ll

define	i32	@test(i32	%a,	i32	%b,	i32	%c)	{

%add	=	add	nsw	i32	%a,	%b

%div	=	sdiv	i32	%add,	%c

ret	i32	%div

}

Before	instruction	selection,	the	SDAG	looks	like	the	following:

$	llc	–view-isel-dags	test.ll

After	Instruction	Selection,	SDAG	looks	like	the	following:

$	llc	–view-sched-dags	test.ll

Scheduling	and	emitting	machine
instructions
Until	now,	we	have	been	performing	the	operations	on	DAG.	Now,	for	the	machine	to
execute,	we	need	to	convert	the	DAGs	into	instruction	that	the	machine	can	execute.	One
step	towards	it	is	emitting	the	list	of	instructions	into	MachineBasicBlock.	This	is	done	by
the	Scheduler,	whose	goal	is	to	linearize	the	DAGs.	The	scheduling	is	dependent	on	the
target	architecture,	as	certain	Targets	will	have	target	specific	hooks	which	can	affect	the
scheduling.

The	class	InstrEmitter::EmitMachineNode	takes	SDNode	*Node	as	one	of	the	input
parameters	for	which	it	will	be	emitting	machine	instructions	of	the	class	MachineInstr.
These	instructions	are	emitted	into	a	MachineBasicBlock.

The	function	calls	EmitSubregNode,	EmitCopyToRegClassNode	and	EmitRegSequence	for
the	handling	of	subreg	insert/extract,	COPY_TO_REGCLASS,	and	REG_SEQUENCE	respectively.

The	call	MachineInstrBuilder	MIB	=	BuildMI(*MF,	Node->getDebugLoc(),	II);	is
used	to	build	the	Machine	Instruction.	The	CreateVirtualRegisters	function	is	called	to
add	result	register	values	created	by	this	instruction.

The	for	loop	emits	the	operands	of	the	instruction	:

for	(unsigned	i	=	NumSkip;	i	!=	NodeOperands;	++i)

				AddOperand(MIB,	Node->getOperand(i),	i-NumSkip+NumDefs,	&II,

															VRBaseMap,	/*IsDebug=*/false,	IsClone,	IsCloned);

MBB->insert(InsertPos,	MIB);	

It	inserts	the	instruction	into	its	position	in	the	MachineBasicBlock.

The	following	code	marks	unused	registers	as	dead:

if	(!UsedRegs.empty()	||	II.getImplicitDefs())

				MIB->setPhysRegsDeadExcept(UsedRegs,	*TRI);

As	we	had	discussed	earlier	that	the	target	specific	hooks	affect	the	scheduling,	the	code
for	that	in	this	function	is	as	follows:

if	(II.hasPostISelHook())

				TLI->AdjustInstrPostInstrSelection(MIB,	Node);

The	AdjustInstrPostInstrSelection	is	a	virtual	function	implemented	by	Targets.

Let’s	take	an	example	to	see	the	machine	instructions	generated	in	this	step.	To	do	this,	we
need	to	pass	the	command-line	option	-print-machineinstrs	to	the	llc	tool.	Let’s	take
the	same	testcode	used	earlier:

$	cat	test.ll

define	i32	@test(i32	%a,	i32	%b,	i32	%c)	{

%add	=	add	nsw	i32	%a,	%b

%div	=	sdiv	i32	%add,	%c

ret	i32	%div

}

Now,	invoke	the	llc	command	and	pass	the	–print-machineinstrs	to	it.	Pass	test.ll	as
the	input	file	and	store	the	output	in	the	outfile:

llc	-print-machineinstrs	test.ll	>	outfile	2>&1

The	outfile	is	large,	containing	many	other	phases	of	code	generation	apart	from
scheduling.	We	need	to	look	into	the	section	after	“#	After	Instruction	Selection:”	in
the	output	file,	which	is	as	follows:

#	After	Instruction	Selection:

#	Machine	code	for	function	test:	SSA

Function	Live	Ins:	%EDI	in	%vreg0,	%ESI	in	%vreg1,	%EDX	in	%vreg2

BB#0:	derived	from	LLVM	BB	%0

				Live	Ins:	%EDI	%ESI	%EDX

								%vreg2<def>	=	COPY	%EDX;	GR32:%vreg2

								%vreg1<def>	=	COPY	%ESI;	GR32:%vreg1

								%vreg0<def>	=	COPY	%EDI;	GR32:%vreg0

								%vreg3<def,tied1>	=	ADD32rr	%vreg0<tied0>,	%vreg1,	%EFLAGS<imp-

def,dead>;	GR32:%vreg3,%vreg0,%vreg1

								%EAX<def>	=	COPY	%vreg3;	GR32:%vreg3

								CDQ	%EAX<imp-def>,	%EDX<imp-def>,	%EAX<imp-use>

								IDIV32r	%vreg2,	%EAX<imp-def>,	%EDX<imp-def,dead>,	%EFLAGS<imp-

def,dead>,	%EAX<imp-use>,	%EDX<imp-use>;	GR32:%vreg2

								%vreg4<def>	=	COPY	%EAX;	GR32:%vreg4

								%EAX<def>	=	COPY	%vreg4;	GR32:%vreg4

								RETQ	%EAX

#	End	machine	code	for	function	test.

We	can	see	in	the	output	that	certain	places	being	taken	by	physical	registers	and	some	by
virtual	registers.	We	can	also	see	the	machine	instruction	IDIV32r	in	the	output.	In	the
next	section,	we	will	see	how	physical	registers	are	assigned	to	these	virtual	registers
present	in	the	code.

Register	allocation
The	next	step	of	the	code	generator	is	register	allocation.	As	we	saw	in	the	previous
example,	some	of	the	registers	being	used	were	virtual	registers.	Register	allocation	is	the
task	of	assigning	physical	registers	to	these	virtual	registers.	In	LLVM,	the	virtual	registers
can	be	infinite	in	number,	but	the	numbers	of	physical	registers	are	limited	depending	on
the	target.	So,	by	register	allocation,	we	aim	at	maximizing	the	number	of	physical
registers	being	assigned	to	virtual	registers.	We	must	note	that	the	physical	registers	are
limited	in	number,	so	it	is	not	always	possible	that	all	the	virtual	registers	can	be	assigned
a	physical	register.	If	there	is	no	physical	register	available	at	some	point	and	we	need	a
physical	register	for	a	variable,	we	might	move	a	variable	that	is	present	in	physical
register	to	main	memory	and	thus	assign	the	freed	register	to	the	variable	we	want.	This
process	of	moving	a	variable	from	physical	register	to	memory	is	called	spilling.	There
are	various	algorithms	to	calculate	which	variable	should	be	spilled	from	register	to
memory.

Another	important	role	that	the	register	allocator	plays	is	SSA	form	deconstruction.	The
phi	instructions	present	in	the	machine	instruction	till	now	need	to	be	replaced	with	a
regular	instruction.	The	traditional	way	of	doing	so	is	to	replace	it	with	a	copy	instruction.

It	must	be	noted	that	some	of	the	machine	fragments	have	already	registers	assigned	to
them.	This	is	due	to	target	requirements	where	it	wants	certain	registers	fixed	to	certain
operations.	Apart	from	these	fixed	registers,	the	register	allocator	takes	care	of	the	rest	of
the	non-fixed	registers.

Register	allocation	for	mapping	virtual	registers	to	physical	registers	can	be	done	in	the
following	two	ways:

Direct	Mapping:	It	makes	use	of	the	TargetRegisterInfo	class	and	the
MachineOperand	class.	The	developer	in	this	case	needs	to	provide	the	location	where
load	and	store	instructions	are	to	be	inserted	to	get	values	from	the	memory	and	store
values	in	the	memory.
Indirect	Mapping:	In	this,	the	VirtRegMap	class	takes	care	of	inserting	loads	and
stores.	It	also	gets	value	from	memory	and	stores	value	to	memory.	We	need	to	use
the	VirtRegMap::assignVirt2Phys(vreg,	preg)	function	for	mapping	virtual
register	to	physical	register.

LLVM	has	four	register	allocation	techniques.	We	will	briefly	look	what	they	are	without
going	into	the	details	of	the	algorithm.	The	four	allocators	are	as	follows:

Basic	Register	Allocator:	The	most	basic	register	allocation	technique	of	all	the
techniques.	It	can	serve	as	a	starter	for	implementing	other	register	allocation
techniques.	The	algorithm	makes	use	of	spill	weight	for	prioritizing	the	virtual
registers.	The	virtual	register	with	the	least	weight	gets	the	register	allocated	to	it.
When	no	physical	register	is	available,	the	virtual	register	is	spilled	to	memory.
Fast	Register	Allocator:	This	allocation	is	done	at	basic	block	level	at	a	time	and
attempts	to	reuse	values	in	registers	by	keeping	them	in	registers	for	longer	period	of

time.
PBQP	Register	Allocator:	As	mentioned	in	the	source	code	file	for	this	register
allocation(llvm/lib/CodeGen/RegAllocPBQP.cpp),	this	allocator	works	by
representing	the	register	allocator	as	a	PBQP	problem	and	then	solving	it	using	PBQP
solver.
Greedy	Register	Allocator:	This	is	one	of	the	efficient	allocator	of	LLVM	and
works	across	the	functions.	Its	allocation	is	done	using	live	range	splitting	and
minimizing	spill	costs.

Let’s	take	an	example	to	see	the	register	allocation	for	the	previous	testcode	test.ll	and
see	how	vregs	are	replaced	with	actual	registers.	Let’s	take	the	greedy	allocator	for
allocation.	You	can	choose	any	other	allocator	as	well.	The	target	machine	used	is	x86-64
machine.

$	llc	test.ll	–regalloc=greedy	–o	test1.s

$	cat	test1.s

		.text

		.file		"test.ll"

		.globl		test

		.align		16,	0x90

		.type		test,@function

test:																																			#	@test

		.cfi_startproc

#	BB#0:

		movl		%edx,	%ecx

		leal		(%rdi,%rsi),	%eax

		cltd

		idivl		%ecx

		retq

.Lfunc_end0:

		.size		test,	.Lfunc_end0-test

		.cfi_endproc

		.section		".note.GNU-stack","",@progbits

We	can	see	all	the	vregs	present	are	gone	now	and	have	been	replaced	by	actual	registers.
The	machine	used	here	was	x86-64.	You	can	try	out	register	allocation	with	pbqp	allocator
and	see	the	difference	in	allocation.	The	leal	(%rdi,%rsi),	%eax	instruction	will	be
replaced	with	the	following	instructions:

movl		%esi,	%edx

movl		%edi,	%eax

leal		(%rax,	%rdx),	%eax.

Code	Emission
We	started	from	LLVM	IR	in	the	first	section	and	converted	it	to	SelectioDAG	and	then	to
MachineInstr.	Now,	we	need	to	emit	this	code.	Currently,	we	have	LLVM	JIT	and	MC	to
do	so.	LLVM	JIT	is	the	traditional	way	of	generating	the	object	code	for	a	target	on	the	go
directly	in	the	memory.	What	we	are	more	interested	in	is	the	LLVM	MC	layer.

The	MC	layer	is	responsible	for	generation	of	assembly	file/object	file	from	the
MachineInstr	passed	on	to	it	from	the	previous	step.	In	the	MC	Layer,	the	instructions	are
represented	as	MCInst,	which	are	lightweight,	as	in	they	don’t	carry	much	information
about	the	program	as	MachineInstr.

The	code	emission	starts	with	the	AsmPrinter	class,	which	is	overloaded	by	the	target
specific	AsmPrinter	class.	This	class	deals	with	general	lowering	process	by	converting
the	MachineFunction	functions	into	MC	label	constructs	by	making	use	of	the	target
specific	MCInstLowering	interface(for	x86	it	is	X86MCInstLower	class	in	the
lib/Target/x86/X86MCInstLower.cpp	file).

Now,	we	have	MCInst	instructions	that	are	passed	to	MCStreamer	class	for	further	step	of
generating	either	the	assembly	file	or	object	code.	Depending	on	the	choice	MCStreamer
makes	use	of	its	subclass	MCAsmStreamer	to	generate	assembly	code	and
MCObjectStreamer	to	generate	the	object	code.

The	target	specific	MCInstPrinter	is	called	by	MCAsmStreamer	to	print	the	assembly
instructions.	To	generate	the	binary	code,	the	LLVM	object	code	assembler	is	called	by
MCObjectStreamer.	The	assembler	in	turn	calls	the
MCCodeEmitter::EncodeInstruction()	to	generate	the	binary	instructions.

We	must	note	that	the	MC	Layer	is	one	of	the	big	difference	between	LLVM	and	GCC.
GCC	always	outputs	assembly	and	then	needs	an	external	assembler	to	transform	this
assembly	into	object	files,	whereas	for	LLVM	using	its	own	assembler	we	can	easily	print
the	instructions	in	binary	and	by	putting	some	wraps	around	them	can	generate	the	object
file	directly.	This	not	only	guarantees	that	the	output	emitted	in	text	or	binary	forms	will
be	same	but	also	saves	time	over	GCC	by	removing	the	calls	to	external	processes.

Now,	let’s	take	an	example	to	look	at	the	MC	Instruction	corresponding	to	assembly	using
the	llc	tool.	We	make	use	of	the	same	testcode	test.ll	file	used	earlier	in	the	chapter.

To	view	the	MC	Instructions,	we	need	to	pass	the	command-line	option	–asm-show-inst
option	to	llc.	It	will	show	the	MC	instructions	as	assembly	file	comments.

llc	test.ll	-asm-show-inst	-o	-

		.text

		.file		"test.ll"

		.globl		test

		.align		16,	0x90

		.type		test,@function

test:																																			#	@test

		.cfi_startproc

#	BB#0:

		movl		%edx,	%ecx														#	<MCInst	#1674	MOV32rr

																																								#		<MCOperand	Reg:22>

																																								#		<MCOperand	Reg:24>>

		leal		(%rdi,%rsi),	%eax							#	<MCInst	#1282	LEA64_32r

																																								#		<MCOperand	Reg:19>

																																								#		<MCOperand	Reg:39>

																																								#		<MCOperand	Imm:1>

																																								#		<MCOperand	Reg:43>

																																								#		<MCOperand	Imm:0>

																																								#		<MCOperand	Reg:0>>

		cltd																												#	<MCInst	#388	CDQ>

		idivl		%ecx																				#	<MCInst	#903	IDIV32r

																																								#		<MCOperand	Reg:22>>

		retq																												#	<MCInst	#2465	RETQ

																																								#		<MCOperand	Reg:19>>

.Lfunc_end0:

		.size		test,	.Lfunc_end0-test

		.cfi_endproc

		.section		".note.GNU-stack","",@progbits

We	see	the	MCInst	and	MCOperands	in	the	assembly	comments.	We	can	also	view	the
binary	encoding	in	assembly	comments	by	passing	the	option	–show-mc-encoding	to	llc.

$	llc	test.ll	-show-mc-encoding	-o	-

		.text		

		.file		"test.ll"

		.globl		test

		.align		16,	0x90

		.type		test,@function

test:																																			#	@test

		.cfi_startproc

#	BB#0:

		movl		%edx,	%ecx														#	encoding:	[0x89,0xd1]

		leal		(%rdi,%rsi),	%eax							#	encoding:	[0x8d,0x04,0x37]

		cltd																												#	encoding:	[0x99]

		idivl		%ecx																				#	encoding:	[0xf7,0xf9]

		retq																												#	encoding:	[0xc3]

.Lfunc_end0:

		.size		test,	.Lfunc_end0-test

		.cfi_endproc

		.section		".note.GNU-stack","",@progbits

Summary
In	this	chapter,	we	saw	how	LLVM	IR	is	converted	to	SelectionDAG.	The	SDAG	then
goes	through	variety	of	transformation.	The	instructions	are	legalized,	so	are	the	data
types.	SelectionDAG	also	goes	through	the	optimization	phase	where	DAG	nodes	are
combined	to	result	in	optimal	nodes,	which	may	be	target-spacific.	After	DAG	combine,	it
goes	through	instruction	selection	phase,	where	target	architecture	instructions	are	mapped
to	DAG	nodes.	After	this,	the	DAGs	are	ordered	in	a	linear	order	to	facilitate	execution	by
CPU,	these	DAGs	are	converted	to	MachineInstr	and	DAGs	are	destroyed.	Assigning	of
physical	register	takes	place	in	the	next	step	to	all	the	virtual	registers	present	in	the	code.
After	this,	the	MC	layer	comes	into	picture	and	deals	with	the	generation	of	Object	and
Assembly	Code.	Going	ahead	in	the	next	chapter,	we	will	see	how	to	define	a	target;	the
various	aspects	of	how	a	target	is	represented	in	LLVM	by	making	use	of	Table	Descriptor
files	and	TableGen.

Chapter	7.	Generating	Code	for	Target
Architecture
The	code	generated	by	the	compiler	finally	has	to	execute	on	the	target	machines.	The
abstract	form	of	the	LLVM	IR	helps	to	generate	code	for	various	architectures.	The	target
machine	can	be	anything	–	CPU,	GPU,	DSP’s,	and	so	on.	The	target	machine	has	some
defining	aspects	such	as	the	register	sets,	the	instruction	set,	the	calling	convention	of	the
function,	and	the	instruction	pipeline.	These	aspects	or	properties	are	generated	using	the
tablegen	tool	so	that	they	can	be	used	easily	while	programming	code	generation	for	the
machine.

LLVM	has	a	pipeline	structure	for	the	backend,	where	instructions	travel	through	phases
—from	the	LLVM	IR	to	SelectionDAG,	then	to	MachineDAG,	then	to	MachineInstr,
and	finally	to	MCInst.	The	IR	is	converted	to	SelectionDAG.	SelectionDAG	then	goes
through	legalization	and	optimizations.	After	this	stage,	the	DAG	nodes	are	mapped	to
target	instructions	(instruction	selection).	The	DAG	then	goes	through	instruction
scheduling,	emitting	linear	sequences	of	instructions.	The	virtual	registers	are	then	allotted
the	target	machine	registers,	which	involves	optimal	register	allocation	minimizing
memory	spills.

This	chapter	describes	how	to	represent	target	architecture.	It	also	describes	how	to	emit
assembly	code.

The	topics	discussed	in	this	chapter	are	as	follows:

Defining	registers	and	register	sets
Defining	the	calling	convention
Defining	the	instruction	set
Implementing	frame	lowering
Selecting	an	instruction
Printing	an	instruction
Registering	a	target

Sample	backend
To	understand	target	code	generation,	we	define	a	simple	RISC-type	architecture	TOY
machine	with	minimal	registers,	say	r0-r3,	a	stack	pointer	SP,	a	link	register,	LR	(for
storing	the	return	address);	and	a	CPSR	–	current	state	program	register.	The	calling
convention	of	this	toy	backend	is	similar	to	the	ARM	thumb-like	architecture—arguments
passed	to	the	function	will	be	stored	in	register	sets	r0-r1,	and	the	return	value	will	be
stored	in	r0.

Defining	registers	and	register	sets
Register	sets	are	defined	using	the	tablegen	tool.	Tablegen	helps	to	maintain	large	number
of	records	of	domain	specific	information.	It	factors	out	the	common	features	of	these
records.	This	helps	in	reducing	duplication	in	the	description	and	forms	a	structural	way	of
representing	domain	information.	Please	visit	http://llvm.org/docs/TableGen/	to
understand	tablegen	in	detail.	TableGen	files	are	interpreted	by	the	TableGen	binary:
llvm-tblgen.

We	have	described	our	sample	backend	in	the	preceding	paragraph,	which	has	four
registers	(r0-r3),	a	stack	register	(SP),	and	a	link	register	(LR).	These	can	be	specified	in
the	TOYRegisterInfo.td	file.	The	tablegen	function	provides	the	Register	class,	which
can	be	extended	to	specify	the	registers.	Create	a	new	file	named	TOYRegisterInfo.td.

The	registers	can	be	defined	by	extending	the	Register	class.

class	TOYReg<bits<16>	Enc,	string	n>	:	Register<n>	{

let	HWEncoding	=	Enc;

let	Namespace	=	"TOY";

}

The	registers	r0-r3	belong	to	a	general	purpose	Register	class.	This	can	be	specified	by
extending	RegisterClass.

foreach	i	=	0-3	in	{

def	R#i	:	R<i,	"r"#i	>;

}

def	GRRegs	:	RegisterClass<"TOY",	[i32],	32,

(add	R0,	R1,	R2,	R3,	SP)>;

The	remainings,	register	SP,	LR,	and	CPSR,	can	be	defined	as	follows:

def	SP	:	TOYReg<13,	"sp">;

def	LR	:	TOYReg<14,	"lr">;

def	CPSR		:	TOYReg<16,	"cpsr">;

When	the	whole	thing	is	put	together,	the	TOYRegisterInfo.td	looks	like	the	following:

class	TOYReg<bits<16>	Enc,	string	n>	:	Register<n>	{

let	HWEncoding	=	Enc;

let	Namespace	=	"TOY";

}

foreach	i	=	0-3	in	{

def	R#i	:	R<i,	"r"#i	>;

}

def	SP	:	TOYReg<13,	"sp">;

def	LR	:	TOYReg<14,	"lr">;

def	GRRegs	:	RegisterClass<"TOY",	[i32],	32,

(add	R0,	R1,	R2,	R3,	SP)>;

We	can	put	this	file	in	a	new	folder	named	TOY	in	the	parent	folder	named	Target	in	the

http://llvm.org/docs/TableGen/

llvm’s	root	directory,	which	is	llvm_root_directory/lib/Target/TOY/
TOYRegisterInfo.td

The	tablegen	tool	llvm-tablegen,	processes	this	.td	file	to	generate	the	.inc	file,	which
generally	has	enums	generated	for	these	registers.	These	enums	can	be	used	in	the	.cpp
files,	in	which	the	registers	can	be	referenced	as	TOY::R0.

Defining	the	calling	convention
The	calling	convention	specifies	how	values	are	passed	to	and	returned	from	a	function
call.	Our	TOY	architecture	specifies	that	two	arguments	are	passed	in	two	registers,	r0	and
r1,	while	the	remaining	ones	are	passed	to	the	stack.	Calling	convention	defined	is	then
used	in	the	Instruction	Selection	phase	by	referring	to	the	function	pointer.

While	defining	a	calling	convention,	we	have	to	represent	two	sections—one	to	define	the
convention	return	value,	and	other	to	define	the	convention	for	argument	passing.	The
parent	class	CallingConv	is	inherited	to	define	the	calling	convention.

In	our	TOY	architecture,	the	return	value	is	stored	in	r0	register.	If	there	are	more
arguments,	integer	values	get	stored	in	stack	slots	that	are	4	bytes	in	size	and	4-byte
aligned.	This	can	be	declared	in	TOYCallingConv.td	as	follows:

def	RetCC_TOY	:	CallingConv<[

CCIfType<[i32],	CCAssignToReg<[R0]>>,

CCIfType<[i32],	CCAssignToStack<4,	4>>

]>;

The	argument	passing	convention	can	be	defined	as	follows:

def	CC_TOY	:	CallingConv<[

CCIfType<[i8,	i16],	CCPromoteToType<i32>>,

CCIfType<[i32],	CCAssignToReg<[R0,	R1]>>,

CCIfType<[i32],	CCAssignToStack<4,	4>>

]>;

The	preceding	declaration	says	three	things,	which	are	as	follows:

If	the	datatype	of	the	arguments	is	i8	or	i16,	it	will	get	promoted	to	i32
The	first	two	arguments	will	be	stored	in	register	r0	and	r1
If	there	are	more	arguments,	they	will	be	stored	in	Stack

We	also	define	the	callee-saved	register	since	callee-saved	registers	are	used	to	hold	long-
lived	values	that	should	be	preserved	across	calls.

def	CC_Save	:	CalleeSavedRegs<(add	R2,	R3)>;

The	llvm-tablegen	tool	generates	a	TOYCallingConv.inc	file	after	building	the	project,
which	will	be	included	in	the	Instruction	Selection	phase	in	the	TOYISelLowering.cpp
file.

Defining	the	instruction	set
Architectures	have	rich	instruction	sets	to	represent	various	operations	supported	by	the
target	machine.	Typically,	three	things	need	to	be	defined	in	the	target	description	file
when	representing	the	instructions:

operands
the	assembly	string
the	instruction	pattern

The	specification	contains	a	list	of	definitions	or	outputs,	and	a	list	of	uses	or	inputs.	There
can	be	different	operand	classes,	such	as	the	Register	class,	and	the	immediate	and	more
complex	register+imm	operands.

For	example,	we	define	register	to	register	addition	for	our	Toy	machine	as	follows	in
TOYInstrInfo.td:

def	ADDrr	:	InstTOY<(outs	GRRegs:$dst),

(ins	GRRegs:$src1,	GRRegs:$src2),

"add	$dst,	$src1,z$src2",

[(set	i32:$dst,	(add	i32:$src1,	i32:$src2))]>;

In	the	above	declaration,	the	‘ins‘	has	two	registers	$src1	and	$src2	belonging	to	the
general	purpose	register	class,	which	holds	the	two	operands.	The	result	of	the	operation
will	be	put	into	‘outs‘,	which	is	a	$dst	register	belonging	to	the	general	purpose	Register
class.	The	assembly	string	is	“add	$dst,	$src1,z$src2“.	The	values	of	$src1,	$src2	and
$dst	will	be	determined	at	the	time	of	register	allocation.	So,	an	assembly	will	be
generated	for	add	between	two	registers,	like	this:

add	r0,	r0,	r1

We	saw	above	how	a	simple	instruction	can	be	represented	using	tablegen.	Similar	to	the
add	register	to	register	instruction,	a	subtract	register	from	a	register
instruction	can	be	defined.	We	leave	it	to	the	readers	to	try	it	out.	A	more	detailed
representation	of	complex	instructions	can	be	examined	from	the	ARM	or	X86
architecture	specifications	in	the	project	code.

Implementing	frame	lowering
Frame	lowering	involves	emitting	function	prologue	and	epilogue.	The	prologue	happens
at	the	beginning	of	a	function.	It	sets	up	the	stack	frame	of	the	called	function.	The
epilogue	happens	last	in	a	function,	it	restores	the	stack	frame	of	the	calling	(parent)
function.

The	“stack”	serves	several	purposes	in	the	execution	of	a	program,	as	follows:

Keeping	track	of	return	address,	when	calling	a	function
Storage	of	local	variables	in	the	context	of	a	function	call
Passing	arguments	from	the	caller	to	the	callee.

Thus	there	are	2	main	functions	that	need	to	be	defined	when	implementing	frame
lowering	–	emitPrologue()	and	emitEpilogue().

The	emitPrologue()	function	can	be	defined	as	follows:

void	TOYFrameLowering::emitPrologue(MachineFunction	&MF)	const	{

		const	TargetInstrInfo	&TII	=	*MF.getSubtarget().getInstrInfo();

		MachineBasicBlock	&MBB	=	MF.front();

		MachineBasicBlock::iterator	MBBI	=	MBB.begin();

		uint64_t	StackSize	=	computeStackSize(MF);

		if	(!StackSize)	{

				return;

		}

		unsigned	StackReg	=	TOY::SP;

		unsigned	OffsetReg	=	materializeOffset(MF,	MBB,	MBBI,	

(unsigned)StackSize);

		if	(OffsetReg)	{

				BuildMI(MBB,	MBBI,	dl,	TII.get(TOY::SUBrr),	StackReg)

								.addReg(StackReg)

								.addReg(OffsetReg)

								.setMIFlag(MachineInstr::FrameSetup);

		}	else	{

				BuildMI(MBB,	MBBI,	dl,	TII.get(TOY::SUBri),	StackReg)

								.addReg(StackReg)

								.addImm(StackSize)

								.setMIFlag(MachineInstr::FrameSetup);

		}

}

The	above	function	moves	over	Machine	Basic	Block.	It	calculates	stack	size	for	the
function,	calculates	offset	for	the	stack	size,	and	emits	instructions	to	set	up	the	frame	with
a	stack	register.

Similarly,	the	emitEpilogue()	function	can	be	defined	as	follows:

void	TOYFrameLowering::emitEpilogue(MachineFunction	&MF,

																																				MachineBasicBlock	&MBB)	const	{

		const	TargetInstrInfo	&TII	=	*MF.getSubtarget().getInstrInfo();

		MachineBasicBlock::iterator	MBBI	=	MBB.getLastNonDebugInstr();

		DebugLoc	dl	=	MBBI->getDebugLoc();

		uint64_t	StackSize	=	computeStackSize(MF);

		if	(!StackSize)	{

				return;

		}

		unsigned	StackReg	=	TOY::SP;

		unsigned	OffsetReg	=	materializeOffset(MF,	MBB,	MBBI,	

(unsigned)StackSize);

		if	(OffsetReg)	{

				BuildMI(MBB,	MBBI,	dl,	TII.get(TOY::ADDrr),	StackReg)

								.addReg(StackReg)

								.addReg(OffsetReg)

								.setMIFlag(MachineInstr::FrameSetup);

		}	else	{

				BuildMI(MBB,	MBBI,	dl,	TII.get(TOY::ADDri),	StackReg)

								.addReg(StackReg)

								.addImm(StackSize)

								.setMIFlag(MachineInstr::FrameSetup);

		}

}

The	preceding	function	also	calculates	stack	size,	over	goes	the	machine	basic	block,	and
sets	up	the	function	frame	when	returning	from	the	function.	Please	note	that	the	stack
here	is	descending.

The	emitPrologue()	function	first	computes	the	stack	size	to	determine	whether	the
prologue	is	required	at	all.	Then	it	adjusts	the	stack	pointer	by	calculating	the	offset.	For
the	emitEpilogue(),	it	first	checks	whether	the	epilogue	is	required	or	not.	Then	it
restores	the	stack	pointer	to	what	it	was	at	the	beginning	of	the	function.

For	example,	consider	this	input	IR:

%p	=	alloca	i32,	align	4

store	i32	2,	i32*	%p

%b	=	load	i32*	%p,	align	4

%c	=	add	nsw	i32	%a,	%b

The	TOY	assembly	generated	will	look	like	this:

sub	sp,	sp,	#4	;	prologue

movw	r1,	#2

str	r1,	[sp]

add	r0,	r0,	#2

add	sp,	sp,	#4	;	epilogue

Lowering	instructions
In	this	chapter,	we	will	see	the	implementation	of	3	things	–	Function	call	calling
convention,	Formal	argument	calling	convention,	and	Return	value	calling	convention.	We
create	a	file	TOYISelLowering.cpp,	and	implement	Instructions	Lowering	in	it.

First,	let’s	look	at	how	a	call	calling	convention	can	be	implemented.

SDValue	TOYTar-getLoweing::LowerCall(TargetLowering::CallLoweringInfo	&CLI,	

SmallVectorImpl<SDValue>	&InVals)

	const	{

		SelectionDAG	&DAG	=	CLI.DAG;

		SDLoc	&Loc	=	CLI.DL;

		SmallVectorImpl<ISD::OutputArg>	&Outs	=	CLI.Outs;

		SmallVectorImpl<SDValue>	&OutVals	=	CLI.OutVals;

		SmallVectorImpl<ISD::InputArg>	&Ins	=	CLI.Ins;

		SDValue	Chain	=	CLI.Chain;

		SDValue	Callee	=	CLI.Callee;

		CallingConv::ID	CallConv	=	CLI.CallConv;

		const	bool	isVarArg	=	CLI.IsVarArg;

		CLI.IsTailCall	=	false;

		if	(isVarArg)	{

				llvm_unreachable("Unimplemented");

		}

		//	Analyze	operands	of	the	call,	assigning	locations	to	each

		//	operand.

		SmallVector<CCValAssign,	16>	ArgLocs;

		CCState	CCInfo(CallConv,	isVarArg,	DAG.getMachineFunction(),	ArgLocs,	

*DAG.getContext());

		CCInfo.AnalyzeCallOperands(Outs,	CC_TOY);

		//	Get	the	size	of	the	outgoing	arguments	stack	space

		//	requirement.

		const	unsigned	NumBytes	=	CCInfo.getNextStackOffset();

		Chain	=	DAG.getCALLSEQ_START(Chain,

																															DAG.getIntPtrConstant(NumBytes,	Loc,	true),	

Loc);

		SmallVector<std::pair<unsigned,	SDValue>,	8>	RegsToPass;

		SmallVector<SDValue,	8>	MemOpChains;

		//	Walk	the	register/memloc	assignments,	inserting	copies/loads.

		for	(unsigned	i	=	0,	e	=	ArgLocs.size();	i	!=	e;	++i)	{

				CCValAssign	&VA	=	ArgLocs[i];

				SDValue	Arg	=	OutVals[i];

				//	We	only	handle	fully	promoted	arguments.

				assert(VA.getLocInfo()	==	CCValAssign::Full	&&	"Unhandled	loc	

				info");

				if	(VA.isRegLoc())	{

						RegsToPass.push_back(std::make_pair(VA.getLocReg(),	Arg));

						continue;

				}

				assert(VA.isMemLoc()	&&

											"Only	support	passing	arguments	through	registers	or	

											via	the	stack");

				SDValue	StackPtr	=	DAG.getRegister(TOY::SP,	MVT::i32);

				SDValue	PtrOff	=	DAG.getIntPtrConstant(VA.getLocMemOffset(),	

				Loc);

				PtrOff	=	DAG.getNode(ISD::ADD,	Loc,	MVT::i32,	StackPtr,	

				PtrOff);

				MemOpChains.push_back(DAG.getStore(Chain,	Loc,	Arg,	PtrOff,

																																							MachinePointerInfo(),	false,	false,	

0));

		}

		//	Emit	all	stores,	make	sure	they	occur	before	the	call.

		if	(!MemOpChains.empty())	{

				Chain	=	DAG.getNode(ISD::TokenFactor,	Loc,	MVT::Other,	MemOpChains);

		}

		//	Build	a	sequence	of	copy-to-reg	nodes	chained	together	with

		//	token	chain

		//	and	flag	operands	which	copy	the	outgoing	args	into	the

		//	appropriate	regs.

		SDValue	InFlag;

		for	(auto	&Reg	:	RegsToPass)	{

				Chain	=	DAG.getCopyToReg(Chain,	Loc,	Reg.first,	Reg.second,	InFlag);

				InFlag	=	Chain.getValue(1);

		}

		//	We	only	support	calling	global	addresses.

		GlobalAddressSDNode	*G	=	dyn_cast<GlobalAddressSDNode>(Callee);

		assert(G	&&	"We	only	support	the	calling	of	global	address-es");

		EVT	PtrVT	=	getPointerTy(DAG.getDataLayout());

		Callee	=	DAG.getGlobalAddress(G->getGlobal(),	Loc,	PtrVT,	0);

		std::vector<SDValue>	Ops;

		Ops.push_back(Chain);

		Ops.push_back(Callee);

		//	Add	argument	registers	to	the	end	of	the	list	so	that	they

		//	are	known	live	into	the	call.

		for	(auto	&Reg	:	RegsToPass)	{

				Ops.push_back(DAG.getRegister(Reg.first,	Reg.second.getValueType()));

		}

		//	Add	a	register	mask	operand	representing	the	call-preserved

		//	registers.

		const	uint32_t	*Mask;

		const	TargetRegisterInfo	*TRI	=	DAG.getSubtarget().getRegisterInfo();

		Mask	=	TRI->getCallPreservedMask(DAG.getMachineFunction(),	CallConv);

		assert(Mask	&&	"Missing	call	preserved	mask	for	calling	

		convention");

		Ops.push_back(DAG.getRegisterMask(Mask));

		if	(InFlag.getNode())	{

				Ops.push_back(InFlag);

		}

		SDVTList	NodeTys	=	DAG.getVTList(MVT::Other,	MVT::Glue);

		//	Returns	a	chain	and	a	flag	for	retval	copy	to	use.

		Chain	=	DAG.getNode(TOYISD::CALL,	Loc,	NodeTys,	Ops);

		InFlag	=	Chain.getValue(1);

		Chain	=	DAG.getCALLSEQ_END(Chain,	DAG.getIntPtrConstant(NumBytes,	Loc,	

true),

																													DAG.getIntPtrConstant(0,	Loc,	true),	InFlag,	

Loc);

		if	(!Ins.empty())	{

				InFlag	=	Chain.getValue(1);

		}

		//	Handle	result	values,	copying	them	out	of	physregs	into	vregs	

		//	that	we	return.

		return	LowerCallResult(Chain,	InFlag,	CallConv,	isVarArg,	Ins,	

																									Loc,	DAG,	InVals);

}

In	the	above	function,	we	first	analyzed	the	operands	of	the	call,	assigned	a	location	to
each	operand,	and	calculated	the	size	of	the	argument	stack	space.	Then	we	scanned	the
register/memloc	assignment	and	inserted	copies	and	loads.	For	our	sample	target,	we
support	passing	arguments	through	registers	or	via	stack	(remember	the	calling	convention
defined	in	the	previous	section).	We	then	emit	all	the	stores	making	sure	they	happen
before	call.	We	build	a	sequence	of	copy-to-reg	nodes	that	copy	the	outgoing	arguments
into	the	appropriate	registers.	Then,	we	add	a	register	mask	operand	representing	the	call-
preserved	registers.	We	return	a	chain	and	a	flag	for	return	value	copy	to	use	and	finally
handle	result	values,	copying	them	out	of	physregs	into	vregs	that	we	return.

We	will	now	look	at	the	implementation	of	a	formal	argument	calling	convention.

SDValue	TOYTargetLowering::LowerFormalArguments(

				SDValue	Chain,	CallingConv::ID	CallConv,	bool	isVarArg,

				const	SmallVectorImpl<ISD::InputArg>	&Ins,	SDLoc	dl,	SelectionDAG	&DAG,

				SmallVectorImpl<SDValue>	&InVals)	const	{

		MachineFunction	&MF	=	DAG.getMachineFunction();

		MachineRegisterInfo	&RegInfo	=	MF.getRegInfo();

		assert(!isVarArg	&&	"VarArg	not	supported");

		//	Assign	locations	to	all	of	the	incoming	arguments.

		SmallVector<CCValAssign,	16>	ArgLocs;

		CCState	CCInfo(CallConv,	isVarArg,	DAG.getMachineFunction(),	ArgLocs,	

*DAG.getContext());

		CCInfo.AnalyzeFormalArguments(Ins,	CC_TOY);

		for	(auto	&VA	:	ArgLocs)	{

				if	(VA.isRegLoc())	{

						//	Arguments	passed	in	registers

						EVT	RegVT	=	VA.getLocVT();

						assert(RegVT.getSimpleVT().SimpleTy	==	MVT::i32	&&

													"Only	support	MVT::i32	register	passing");

						const	unsigned	VReg	=

										RegInfo.createVirtualRegister(&TOY::GRRegsRegClass);

						RegInfo.addLiveIn(VA.getLocReg(),	VReg);

						SDValue	ArgIn	=	DAG.getCopyFromReg(Chain,	dl,	VReg,	RegVT);

						InVals.push_back(ArgIn);

						continue;

				}

				assert(VA.isMemLoc()	&&

											"Can	only	pass	arguments	as	either	registers	or	via	the	

											stack");

				const	unsigned	Offset	=	VA.getLocMemOffset();

				const	int	FI	=	MF.getFrameInfo()->CreateFixedObject(4,	Offset,	

				true);

				EVT	PtrTy	=	getPointerTy(DAG.getDataLayout());

				SDValue	FIPtr	=	DAG.getFrameIndex(FI,	PtrTy);

				assert(VA.getValVT()	==	MVT::i32	&&

											"Only	support	passing	arguments	as	i32");

				SDValue	Load	=	DAG.getLoad(VA.getValVT(),	dl,	Chain,	FIPtr,

																															MachinePointerInfo(),	false,	false,	false,	

0);

				InVals.push_back(Load);

		}

		return	Chain;

}

In	the	above	implementation	of	a	formal	argument	calling	convention,	we	assigned	a
location	to	all	the	incoming	arguments.	We	handle	only	the	arguments	passed	via	a	register
or	a	stack.	We	will	now	look	at	the	implementation	of	a	return	value	calling	convention.

bool	TOYTargetLowering::CanLowerReturn(

				CallingConv::ID	CallConv,	MachineFunction	&MF,	bool	isVarArg,

				const	SmallVectorImpl<ISD::OutputArg>	&Outs,	LLVMContext	&Context)	

const	{

		SmallVector<CCValAssign,	16>	RVLocs;

		CCState	CCInfo(CallConv,	isVarArg,	MF,	RVLocs,	Context);

		if	(!CCInfo.CheckReturn(Outs,	RetCC_TOY))	{

				return	false;

		}

		if	(CCInfo.getNextStackOffset()	!=	0	&&	isVarArg)	{

				return	false;

		}

		return	true;

}

SDValue

TOYTargetLowering::LowerReturn(SDValue	Chain,	CallingConv::ID	CallConv,	

bool	isVarArg,	const	SmallVec	torImpl<ISD::OutputArg>	&	Outs,	const	

SmallVectorImpl<SDValue>	const	SmallVec	torImpl<ISD::OutputArg>	&	Outs,

		if	(isVarArg)	{

				report_fatal_error("VarArg	not	supported");

		}

		//	CCValAssign	-	represent	the	assignment	of

		//	the	return	value	to	a	location

		SmallVector<CCValAssign,	16>	RVLocs;

		//	CCState	-	Info	about	the	registers	and	stack	slot.

		CCState	CCInfo(CallConv,	isVarArg,	DAG.getMachineFunction(),	RVLocs,

																	*DAG.getContext());

		CCInfo.AnalyzeReturn(Outs,	RetCC_TOY);

		SDValue	Flag;

		SmallVector<SDValue,	4>	RetOps(1,	Chain);

		//	Copy	the	result	values	into	the	output	registers.

		for	(unsigned	i	=	0,	e	=	RVLocs.size();	i	<	e;	++i)	{

				CCValAssign	&VA	=	RVLocs[i];

				assert(VA.isRegLoc()	&&	"Can	only	return	in	registers!");

				Chain	=	DAG.getCopyToReg(Chain,	dl,	VA.getLocReg(),	OutVals[i],	Flag);

				Flag	=	Chain.getValue(1);

				RetOps.push_back(DAG.getRegister(VA.getLocReg(),	VA.getLocVT()));

		}

		RetOps[0]	=	Chain;	//	Update	chain.

		//	Add	the	flag	if	we	have	it.

		if	(Flag.getNode())	{

				RetOps.push_back(Flag);

		}

		return	DAG.getNode(TOYISD::RET_FLAG,	dl,	MVT::Other,	RetOps);

}

We	first	see	if	we	can	lower	a	return.	We	then	gather	information	about	registers	and	stack
slots.	We	copy	the	result	values	in	the	output	registers	and	finally	return	a	DAG	node	for	a
return	value.

Printing	an	instruction
Printing	an	assembly	instruction	is	an	important	step	in	generating	target	code.	Various
classes	are	defined	that	work	as	a	gateway	to	the	streamers.

First,	we	initialize	the	class	for	instruction,	assigning	the	operands,	the	assembly	string,
pattern,	the	output	variable,	and	so	on	in	the	TOYInstrFormats.td	file:

class	InstTOY<dag	outs,	dag	ins,	string	asmstr,	list<dag>	pattern>

				:	Instruction	{

		field	bits<32>	Inst;

		let	Namespace	=	"TOY";

		dag	OutOperandList	=	outs;

		dag	InOperandList	=	ins;

		let	AsmString	=	asmstr;

		let	Pattern	=	pattern;

		let	Size	=	4;

}

Then,	we	define	functions	to	print	operands	in	TOYInstPrinter.cpp.

void	TOYInstPrinter::printOperand(const	MCInst	*MI,	unsigned	OpNo,

																																		raw_ostream	&O)	{

		const	MCOperand	&Op	=	MI->getOperand(OpNo);

		if	(Op.isReg())	{

				printRegName(O,	Op.getReg());

				return;

		}

		if	(Op.isImm())	{

				O	<<	"#"	<<	Op.getImm();

				return;

		}

		assert(Op.isExpr()	&&	"unknown	operand	kind	in	printOperand");

		printExpr(Op.getExpr(),	O);

}

This	function	simply	prints	operands,	registers,	or	immediate	values,	as	the	case	may	be.

We	also	define	a	function	to	print	the	register	names	in	the	same	file:

void	TOYInstPrinter::printRegName(raw_ostream	&OS,	unsigned	RegNo)	const	{

		OS	<<	StringRef(getRegisterName(RegNo)).lower();

}

Next,	we	define	a	function	to	print	the	instruction:

void	TOYInstPrinter::printInst(const	MCInst	*MI,	raw_ostream	&O,

																															StringRef	Annot)	{

		printInstruction(MI,	O);

		printAnnotation(O,	Annot);

}

Next,	we	declare	and	define	assembly	info	as	follows:

We	create	a	TOYMCAsmInfo.h	and	declare	an	ASMInfo	class:

#ifndef	TOYTARGETASMINFO_H

#define	TOYTARGETASMINFO_H

#include	"llvm/MC/MCAsmInfoELF.h"

namespace	llvm	{

class	StringRef;

class	Target;

class	TOYMCAsmInfo	:	public	MCAsmInfoELF	{

		virtual	void	anchor();

public:

		explicit	TOYMCAsmInfo(StringRef	TT);

};

}	//	namespace	llvm

#endif

The	constructor	can	be	defined	in	TOYMCAsmInfo.cpp	as	follows:

#include	"TOYMCAsmInfo.h"

#include	"llvm/ADT/StringRef.h"

using	namespace	llvm;

void	TOYMCAsmInfo::anchor()	{}

TOYMCAsmInfo::TOYMCAsmInfo(StringRef	TT)	{

		SupportsDebugInformation	=	true;

		Data16bitsDirective	=	"\t.short\t";

		Data32bitsDirective	=	"\t.long\t";

		Data64bitsDirective	=	0;

		ZeroDirective	=	"\t.space\t";

		CommentString	=	"#";

		AscizDirective	=	".asciiz";

		HiddenVisibilityAttr	=	MCSA_Invalid;

		HiddenDeclarationVisibilityAttr	=	MCSA_Invalid;

		ProtectedVisibilityAttr	=	MCSA_Invalid;

}

For	compilation,	we	define	LLVMBuild.txt	as	follows:

[component_0]

type	=	Library

name	=	TOYAsmPrinter

parent	=	TOY

required_libraries	=	MC	Support

add_to_library_groups	=	TOY

Furthermore,	we	define	the	CMakeLists.txt	file	as	follows:

add_llvm_library(LLVMTOYAsmPrinter

TOYInstPrinter.cpp

)

When	the	final	compilation	takes	place,	the	llc	tool—a	static	compiler—will	generate	the
assembly	of	the	TOY	architecture	(after	registering	the	TOY	architecture	with	the	llc	tool).

To	register	our	TOY	target	with	static	compiler	llc,	follow	the	steps	mentioned	below:

1.	 First,	add	the	entry	of	the	TOY	backend	to	llvm_root_dir/CMakeLists.txt:

set(LLVM_ALL_TARGETS

AArch64

ARM

…

…

TOY

)

2.	 Then,	add	the	toy	entry	to	llvm_root_dir/include/llvm/ADT/Triple.h:

class	Triple	{

public:

enum	ArchType	{

UnknownArch,

arm,	//	ARM	(little	endian):	arm,	armv.*,	xscale

armeb,	//	ARM	(big	endian):	armeb

aarch64,	//	AArch64	(little	endian):	aarch64

…

…

toy	//	TOY:	toy

};

3.	 Add	the	toy	entry	to	llvm_root_dir/include/llvm/	MC/MCExpr.h:

class	MCSymbolRefExpr	:	public	MCExpr	{

public:

enum	VariantKind	{

...

VK_TOY_LO,

VK_TOY_HI,

};

4.	 Add	the	toy	entry	to	llvm_root_dir/include/llvm/	Support/ELF.h:

enum	{

EM_NONE	=	0,	//	No	machine

EM_M32	=	1,	//	AT&T	WE	32100

…

…

EM_TOY	=	220	//	whatever	is	the	next	number

};

5.	 Then,	add	the	toy	entry	to	lib/MC/MCExpr.cpp:

StringRef	MCSymbolRefExpr::getVariantKindName(VariantKind

Kind)	{

switch	(Kind)	{

…

…

case	VK_TOY_LO:	return	"TOY_LO";

case	VK_TOY_HI:	return	"TOY_HI";

}

…

}

6.	 Next,	add	the	toy	entry	to	lib/Support/Triple.cpp:

const	char	*Triple::getArchTypeName(ArchType	Kind)	{

switch	(Kind)	{

…

…

case	toy:	return	"toy";

}

const	char	*Triple::getArchTypePrefix(ArchType	Kind)	{

switch	(Kind)	{

…

…

case	toy:	return	"toy";

}

}

Triple::ArchType	Triple::getArchTypeForLLVMName(StringRef

Name)	{

…

…

.Case("toy",	toy)

…

}

static	Triple::ArchType	parseArch(StringRef	ArchName)	{

…

…

.Case("toy",	Triple::toy)

…

}

static	unsigned

getArchPointerBitWidth(llvm::Triple::ArchType	Arch)	{

…

…

case	llvm::Triple::toy:

return	32;

…

…

}

Triple	Triple::get32BitArchVariant()	const	{

…

…

case	Triple::toy:

//	Already	32-bit.

break;

…

}

Triple	Triple::get64BitArchVariant()	const	{

…

…

case	Triple::toy:

T.setArch(UnknownArch);

break;

…

…

}

7.	 Add	the	toy	directory	entry	to	lib/Target/LLVMBuild.txt:

[common]

subdirectories	=	ARM	AArch64	CppBackend	Hexagon	MSP430	…	…

TOY

8.	 Create	a	new	file	called	TOY.h	in	the	lib/Target/TOY	folder:

#ifndef	TARGET_TOY_H

#define	TARGET_TOY_H

#include	"MCTargetDesc/TOYMCTargetDesc.h"

#include	"llvm/Target/TargetMachine.h"

namespace	llvm	{

class	TargetMachine;

class	TOYTargetMachine;

FunctionPass	*createTOYISelDag(TOYTargetMachine	&TM,

																															CodeGenOpt::Level	OptLevel);

}	//	end	namespace	llvm;

#endif

9.	 Create	a	new	folder	called	TargetInfo	in	the	lib/Target/TOY	folder.	Inside	that
folder,	create	a	new	file	called	TOYTargetInfo.cpp,	as	follows:

#include	"TOY.h"

#include	"llvm/IR/Module.h"

#include	"llvm/Support/TargetRegistry.h"

using	namespace	llvm;

Target	llvm::TheTOYTarget;

extern	"C"	void	LLVMInitializeTOYTargetInfo()	{

		RegisterTarget<Triple::toy>	X(TheTOYTarget,	"toy",	"TOY");

}

10.	 In	the	same	folder,	create	the	CMakeLists.txt	file:

add_llvm_library(LLVMTOYInfo	TOYTargetInfo.cpp)

11.	 Create	an	LLVMBuild.txt	file:

[component_0]

type	=	Library

name	=	TOYInfo

parent	=	TOY

required_libraries	=	Support

add_to_library_groups	=	TOY

12.	 In	the	lib/Target/TOY	folder,	create	a	file	called	TOYTargetMachine.cpp:

#include	"TOYTargetMachine.h"

#include	"TOY.h"

#include	"TOYFrameLowering.h"

#include	"TOYInstrInfo.h"

#include	"TOYISelLowering.h	"

#include	"TOYSelectionDAGInfo.h"

#include	"llvm/CodeGen/Passes.h"

#include	"llvm/IR/Module.h"

#include	"llvm/PassManager.h"

#include	"llvm/Support/TargetRegistry.h"

using	namespace	llvm;

TOYTargetMachine::TOYTargetMachine(const	Target	&T,	StringRef	TT,	

StringRef	CPU,	StringRef	FS,	const	

TargetOptions	&Options,	Reloc::Model	RM,	CodeModel::Model	CM,	

CodeGenOpt::Level	OL)

				:	LLVMTargetMachine(T,	TT,	CPU,	FS,	Options,	RM,	CM,	OL),

						Subtarget(TT,	CPU,	FS,	*this)	{

		initAsmInfo();

}

namespace	{

class	TOYPassConfig	:	public	TargetPassConfig	{

public:

		TOYPassConfig(TOYTargetMachine	*TM,	PassManagerBase	&PM)

						:	TargetPassConfig(TM,	PM)	{}

		TOYTargetMachine	&getTOYTargetMachine()	const	{

				return	getTM<TOYTargetMachine>();

		}

		virtual	bool	addPreISel();

		virtual	bool	addInstSelector();

		virtual	bool	addPreEmitPass();

};

}	//	namespace

TargetPassConfig	*TOYTargetMachine::createPassConfig

(PassManagerBase	&PM)	{

		return	new	TOYPassConfig(this,	PM);

}

bool	TOYPassConfig::addPreISel()	{	return	false;	}

bool	TOYPassConfig::addInstSelector()	{

		addPass(createTOYISelDag(getTOYTargetMachine(),	

getOptLevel()));

		return	false;

}

bool	TOYPassConfig::addPreEmitPass()	{	return	false;	}

//	Force	static	initialization.

extern	"C"	void	LLVMInitializeTOYTarget()	{

		RegisterTargetMachine<TOYTargetMachine>	X(TheTOYTarget);

}

void	TOYTargetMachine::addAnalysisPasses(PassManagerBase	&PM)	{}

13.	 Create	a	new	folder	called	MCTargetDesc	and	a	new	file	called	TOYMCTargetDesc.h:

#ifndef	TOYMCTARGETDESC_H

#define	TOYMCTARGETDESC_H

#include	"llvm/Support/DataTypes.h"

namespace	llvm	{

class	Target;

class	MCInstrInfo;

class	MCRegisterInfo;

class	MCSubtargetInfo;

class	MCContext;

class	MCCodeEmitter;

class	MCAsmInfo;

class	MCCodeGenInfo;

class	MCInstPrinter;

class	MCObjectWriter;

class	MCAsmBackend;

class	StringRef;

class	raw_ostream;

extern	Target	TheTOYTarget;

MCCodeEmitter	*createTOYMCCodeEmitter(const	MCInstrInfo	&MCII,	const	

MCRegisterInfo	&MRI,	const	MCSubtargetInfo	&STI,	MCContext	&Ctx);

MCAsmBackend	*createTOYAsmBackend(const	Target	&T,	const	MCRegisterInfo	

&MRI,	StringRef	TT,	StringRef	CPU);

MCObjectWriter	*createTOYELFObjectWriter(raw_ostream	&OS,	uint8_t	

OSABI);

}	//	End	llvm	namespace

#define	GET_REGINFO_ENUM

#include	"TOYGenRegisterInfo.inc"

#define	GET_INSTRINFO_ENUM

#include	"TOYGenInstrInfo.inc"

#define	GET_SUBTARGETINFO_ENUM

#include	"TOYGenSubtargetInfo.inc"

#endif

14.	 Create	one	more	file,	called	TOYMCTargetDesc.cpp,	in	the	same	folder:

#include	"TOYMCTargetDesc.h"

#include	"InstPrinter/TOYInstPrinter.h"

#include	"TOYMCAsmInfo.h"

#include	"llvm/MC/MCCodeGenInfo.h"

#include	"llvm/MC/MCInstrInfo.h"

#include	"llvm/MC/MCRegisterInfo.h"

#include	"llvm/MC/MCSubtargetInfo.h"

#include	"llvm/MC/MCStreamer.h"

#include	"llvm/Support/ErrorHandling.h"

#include	"llvm/Support/FormattedStream.h"

#include	"llvm/Support/TargetRegistry.h"

#define	GET_INSTRINFO_MC_DESC

#include	"TOYGenInstrInfo.inc"

#define	GET_SUBTARGETINFO_MC_DESC

#include	"TOYGenSubtargetInfo.inc"

#define	GET_REGINFO_MC_DESC

#include	"TOYGenRegisterInfo.inc"

using	namespace	llvm;

static	MCInstrInfo	*createTOYMCInstrInfo()	{

		MCInstrInfo	*X	=	new	MCInstrInfo();

		InitTOYMCInstrInfo(X);

		return	X;

}

static	MCRegisterInfo	*createTOYMCRegisterInfo(StringRef	TT)	{

		MCRegisterInfo	*X	=	new	MCRegisterInfo();

		InitTOYMCRegisterInfo(X,	TOY::LR);

		return	X;

}

static	MCSubtargetInfo	*createTOYMCSubtargetInfo(StringRef	TT,	

StringRef	CPU,	StringRef	FS)	{

		MCSubtargetInfo	*X	=	new	MCSubtargetInfo();

		InitTOYMCSubtargetInfo(X,	TT,	CPU,	FS);

		return	X;

}

static	MCAsmInfo	*createTOYMCAsmInfo(const	MCRegisterInfo	&MRI,	

StringRef	TT)	{

		MCAsmInfo	*MAI	=	new	TOYMCAsmInfo(TT);

		return	MAI;

}

static	MCCodeGenInfo	*createTOYMCCodeGenInfo(StringRef	TT,	Reloc::Model	

RM,	CodeModel::Model	CM,	CodeGenOpt::Level	OL)

	{

		MCCodeGenInfo	*X	=	new	MCCodeGenInfo();

		if	(RM	==	Reloc::Default)	{

				RM	=	Reloc::Static;

		}

		if	(CM	==	CodeModel::Default)	{

				CM	=	CodeModel::Small;

		}

		if	(CM	!=	CodeModel::Small	&&	CM	!=	CodeModel::Large)	{

				report_fatal_error("Target	only	supports	CodeModel	Small	or	

Large");

		}

		X->InitMCCodeGenInfo(RM,	CM,	OL);

		return	X;

}

static	MCInstPrinter	*

createTOYMCInstPrinter(const	Target	&T,	unsigned	SyntaxVariant,

																							const	MCAsmInfo	&MAI,	const	MCInstrInfo	&	MII,	

const	MCRegisterInfo	&MRI,	const	MCSubtargetInfo	&STI)	{

		return	new	TOYInstPrinter(MAI,	MII,	MRI);

}

static	MCStreamer	*

createMCAsmStreamer(MCContext	&Ctx,	formatted_raw_ostream	&OS,

																				bool	isVerboseAsm,	bool	useDwarfDirectory,

																				MCInstPrinter	*InstPrint,	MCCodeEmitter	*CE,

																				MCAsmBackend	*TAB,	bool	ShowInst)	{

		return	createAsmStreamer(Ctx,	OS,	isVerboseAsm,	useD	-	warfDirectory,	

InstPrint,	CE,	TAB,	ShowInst);

}

static	MCStreamer	*createMCStreamer(const	Target	&T,	StringRef	TT,

MCContext	&Ctx,	MCAsmBackend	&MAB,	raw_ostream	&OS,

MCCodeEmitter	*Emitter,	const	MCSubtargetInfo	&STI,

bool	RelaxAll,	bool	NoExecStack)	{

		return	createELFStreamer(Ctx,	MAB,	OS,	Emitter,	false,	NoExecStack);

}

//	Force	static	initialization.

extern	"C"	void	LLVMInitializeTOYTargetMC()	{

		//	Register	the	MC	asm	info.

		RegisterMCAsmInfoFn	X(TheTOYTarget,	createTOYMCAsmInfo);

		//	Register	the	MC	codegen	info.

		TargetRegistry::RegisterMCCodeGenInfo(TheTOYTarget,	

createTOYMCCodeGenInfo);

		//	Register	the	MC	instruction	info.

		TargetRegistry::RegisterMCInstrInfo(TheTOYTarget,	

createTOYMCInstrInfo);

		//	Register	the	MC	register	info.

		TargetRegistry::RegisterMCRegInfo(TheTOYTarget,	

createTOYMCRegisterInfo);

		//	Register	the	MC	subtarget	info.

		TargetRegistry::RegisterMCSubtargetInfo(TheTOYTarget,

																																										createTOYMCSub	targetInfo);

		//	Register	the	MCInstPrinter

		TargetRegistry::RegisterMCInstPrinter(TheTOYTarget,	

createTOYMCInstPrinter);

		//	Register	the	ASM	Backend.

		TargetRegistry::RegisterMCAsmBackend(TheTOYTarget,	

createTOYAsmBackend);

		//	Register	the	assembly	streamer.

		TargetRegistry::RegisterAsmStreamer(TheTOYTarget,	

createMCAsmStreamer);

		//	Register	the	object	streamer.

		TargetRegistry::RegisterMCObjectStreamer(TheTOYTarget,	

createMCStreamer);

		//	Register	the	MCCodeEmitter

		TargetRegistry::RegisterMCCodeEmitter(TheTOYTarget,	

createTOYMCCodeEmitter);

}

15.	 In	the	same	folder,	create	an	LLVMBuild.txt	file:

[component_0]

type	=	Library

name	=	TOYDesc

parent	=	TOY

required_libraries	=	MC	Support	TOYAsmPrinter	TOYInfo

add_to_library_groups	=	TOY

16.	 Create	a	CMakeLists.txt	file:

add_llvm_library(LLVMTOYDesc

TOYMCTargetDesc.cpp)

Build	the	enitre	LLVM	project,	as	follows:

$	cmake	llvm_src_dir	–DCMAKE_BUILD_TYPE=Release	–

DLLVM_TARGETS_TO_BUILD="TOY"

$	make

Here,	we	have	specified	that	we	are	building	the	LLVM	compiler	for	the	

toy	target.	After	the	build	completes,	check	whether	the	TOY	target	

appears	with	the	llc	command:

$	llc	–version

…

…

Registered	Targets	:

toy	–	TOY

The	following	IR,	when	given	to	the	llc	tool,	will	generate	an	assembly	as	shown:

target	datalayout	=	"e-m:e-p:32:32-i1:8:32-i8:8:32-	i16:16:32-i64:32-

f64:32-a:0:32-n32"

target	triple	=	"toy"

define	i32	@foo(i32	%a,	i32	%b){

		%c	=	add	nsw	i32	%a,	%b

		ret	i32	%c

}

$	llc	foo.ll

.text

.file	"foo.ll"

.globl	foo

.type	foo,@function

foo:	#	@foo

#	BB#0:	#	%entry

add	r0,	r0,	r1

b	lr

.Ltmp0:

.size	foo,	.Ltmp0-foo

To	see	the	details	of	how	to	register	a	target	with	llc,	you	can	visit
http://llvm.org/docs/WritingAnLLVMBackend.html#target-registration	and
http://jonathan2251.github.io/lbd/llvmstructure.html#target-registration	by	Chen	Chung-
Shu	and	Anoushe	Jamshidi.

http://llvm.org/docs/WritingAnLLVMBackend.html#target-registration
http://jonathan2251.github.io/lbd/llvmstructure.html#target-registration

Summary
In	this	chapter,	we	had	a	brief	discussion	about	how	a	target	architecture	machine	can	be
represented	in	LLVM.	We	saw	the	ease	of	using	tablegen	in	organizing	data	such	as
register	sets,	instruction	sets,	calling	conventions,	and	so	on,	for	a	given	target.	The	llvm-
tablegen	then	converts	these	target	descriptor	.td	fies	into	enums,	which	can	be	used	in
program	logic	such	as	frame	lowering,	instruction	selection,	instruction	printing,	and	so
on.	More	detailed	and	complex	architectures	like	ARM	and	X86	can	give	insight	on	a
detailed	description	of	the	target.

In	the	first	chapter,	we	tried	a	basic	exercise	to	get	hands-on	with	various	tools	provided
by	the	LLVM	infrastructure.	In	the	subsequent	chapters,	that	is,	Chapter	2,	Building	LLVM
IR,	and	Chapter	3,	Advanced	LLVM	IR,	we	used	APIs	provided	by	LLVM	to	emit	IRs.
Readers	can	use	those	APIs	in	their	frontend	to	convert	their	language	to	LLVM	IR.	In
Chapter	5,	Advanced	IR	Block	Transformations,	we	got	used	to	Pass	Pipeline	for	IR
optimization	and	went	through	some	examples.	In	Chapter	6,	IR	to	Selection	DAG	Phase,
readers	got	familiar	with	the	conversion	of	IR	to	selection	DAG,	which	is	a	step	towards
emitting	machine	code.	In	this	final	chapter,	we	saw	how	to	represent	sample	architecture
with	tablegen	and	use	it	for	emitting	code.

After	reading	this	book,	we	hope	that	readers	become	familiar	with	LLVM	infrastructure
and	are	ready	to	dive	deeply	into	LLVM	and	create	compilers	on	their	own	for	their
custom	architecture	or	a	custom	language.	Happy	Compiling!

Index
A

address
obtaining,	of	element	/	Getting	the	address	of	an	element

B
basic	block

simple	arithmetic	statement,	emitting	in	/	Emitting	a	simple	arithmetic	statement
in	a	basic	block

BasicBlockPass	class	/	Pass	and	Pass	Manager
Basic	Register	Allocator

about	/	Register	allocation
block

adding,	to	function	/	Adding	a	block	to	a	function
Bugpoint	tool

about	/	Modular	design	and	collection	of	libraries

C
code	emission

about	/	Code	Emission
collection	of	libraries

about	/	Modular	design	and	collection	of	libraries
command	line	arguments,	opt

basicaa	/	LLVM	tools	and	using	them	in	the	command	line
da	/	LLVM	tools	and	using	them	in	the	command	line
instcount	/	LLVM	tools	and	using	them	in	the	command	line
loops	/	LLVM	tools	and	using	them	in	the	command	line
scalar	evolution	/	LLVM	tools	and	using	them	in	the	command	line
constprop	/	LLVM	tools	and	using	them	in	the	command	line
globalopt	/	LLVM	tools	and	using	them	in	the	command	line
inline	/	LLVM	tools	and	using	them	in	the	command	line
instcombine	/	LLVM	tools	and	using	them	in	the	command	line
licm	/	LLVM	tools	and	using	them	in	the	command	line
tailcallelim	/	LLVM	tools	and	using	them	in	the	command	line

E
element

address,	obtaining	of	/	Getting	the	address	of	an	element

F
Fast	Register	Allocator

about	/	Register	allocation
flags,	PassManager	class

time-passes	/	Pass	and	Pass	Manager
stats	/	Pass	and	Pass	Manager
instcount	/	Pass	and	Pass	Manager

frame	lowering
implementing	/	Implementing	frame	lowering

function
emitting,	in	Module	/	Emitting	a	function	in	a	module
block,	adding	to	/	Adding	a	block	to	a	function

function	arguments
emitting	/	Emitting	function	arguments

FunctionPass	class	/	Pass	and	Pass	Manager

G
Global	Variable

emitting	/	Emitting	a	global	variable
Greedy	Register	Allocator

about	/	Register	allocation

I
if-else	condition	IR

emitting	/	Emitting	if-else	condition	IR
instcombine	module

methods	/	Instruction	Combining
instruction

printing	/	Printing	an	instruction
instruction	combining

about	/	Instruction	Combining
Instruction	Selection

about	/	Instruction	Selection
instruction	set

defining	/	Defining	the	instruction	set
instruction	simplification	example

about	/	Instruction	simplification	example
methods	/	Instruction	simplification	example

instructions	lowering
implementing	/	Lowering	instructions

IR
converting,	to	selectionDAG	/	Converting	IR	to	selectionDAG

L
Linkages

about	/	Emitting	a	global	variable
ExternalLinkage	/	Emitting	a	global	variable
AvailableExternallyLinkage	/	Emitting	a	global	variable
LinkOnceAnyLinkage	/	Emitting	a	global	variable
LinkOnceODRLinkage	/	Emitting	a	global	variable
WeakAnyLinkage	/	Emitting	a	global	variable
WeakODRLinkage	/	Emitting	a	global	variable
AppendingLinkage	/	Emitting	a	global	variable
InternalLinkage	/	Emitting	a	global	variable
PrivateLinkage	/	Emitting	a	global	variable
ExternalWeakLinkage	/	Emitting	a	global	variable
CommonLinkage	/	Emitting	a	global	variable

llc	/	LLVM	tools	and	using	them	in	the	command	line
lli	/	LLVM	tools	and	using	them	in	the	command	line
llvm-as	/	LLVM	tools	and	using	them	in	the	command	line
llvm-dis	/	LLVM	tools	and	using	them	in	the	command	line
llvm-link	/	LLVM	tools	and	using	them	in	the	command	line
LLVM	Bitcode	file	format

reference	link	/	LLVM	tools	and	using	them	in	the	command	line
LLVM	intrinsics

about	/	LLVM	intrinsics
reference	link	/	LLVM	intrinsics

LLVM	IR
about	/	Getting	familiar	with	LLVM	IR
emitting,	for	loop	/	Emitting	LLVM	IR	for	loop

LLVM	Module
creating	/	Creating	an	LLVM	module

LLVM	tools
about	/	LLVM	tools	and	using	them	in	the	command	line
llvm-as	/	LLVM	tools	and	using	them	in	the	command	line
llvm-dis	/	LLVM	tools	and	using	them	in	the	command	line
llvm-link	/	LLVM	tools	and	using	them	in	the	command	line
lli	/	LLVM	tools	and	using	them	in	the	command	line
llc	/	LLVM	tools	and	using	them	in	the	command	line
opt	/	LLVM	tools	and	using	them	in	the	command	line

local	variables
register	allocated	local	variables	/	Getting	familiar	with	LLVM	IR
stack	allocated	local	variables	/	Getting	familiar	with	LLVM	IR

loop
LLVM	IR,	emitting	for	/	Emitting	LLVM	IR	for	loop

Loop	Interchange

about	/	Loop	processing
Loop	Invariant	Code	Motion	(LICM)

about	/	Loop	processing
LoopPass	class	/	Pass	and	Pass	Manager
loop	processing

about	/	Loop	processing
Loop	Rotation

about	/	Loop	processing
Loop	Simplify	Pass

about	/	Loop	processing
Loop	Unswitch

about	/	Loop	processing
loop	vectorization

about	/	Vectorization

M
Machine	Basic	Block	/	Implementing	frame	lowering
Machine	Instruction

scheduling	/	Scheduling	and	emitting	machine	instructions
emitting	/	Scheduling	and	emitting	machine	instructions

memory
address,	reading	from	/	Reading	from	the	memory

memory	access	operations	/	Memory	access	operations
memory	location

writing	into	/	Writing	into	a	memory	location
methods,	for	filling	information

AnalysisUsage**addRequired<>	method	/	AnalysisUsage::addRequired<>
method
AnalysisUsage*addRequiredTransitive<>	method	/
AnalysisUsage:addRequiredTransitive<>	method
AnalysisUsage**addPreserved<>	method	/	AnalysisUsage::addPreserved<>
method

methods,	for	instruction	simplification
SimplifyBinOp	/	Instruction	simplification	example
SimplifyAddInst	/	Instruction	simplification	example
SimplifySubInst	/	Instruction	simplification	example
SimplifyAndInst	/	Instruction	simplification	example

methods,	for	simplification	of	instcombine	module
SimplifyAssociativeOrCommutative	/	Instruction	Combining
tryFactorization	/	Instruction	Combining

modular	design
about	/	Modular	design	and	collection	of	libraries

Module
function,	emitting	in	/	Emitting	a	function	in	a	module

ModulePass	subclass
about	/	Pass	and	Pass	Manager

N
natural	loops

about	/	Loop	processing

O
opt

about	/	LLVM	tools	and	using	them	in	the	command	line
command	line	arguments	/	LLVM	tools	and	using	them	in	the	command	line

Optimizer
about	/	Modular	design	and	collection	of	libraries

Opt	tool
about	/	Opt	Tool

P
Pass	class

about	/	Pass	and	Pass	Manager
virtual	methods	/	Pass	and	Pass	Manager

passes
reference	link	/	Opt	Tool

Pass	info
using,	in	own	Pass	/	Using	other	Pass	info	in	current	Pass

Pass	Manager	class
about	/	Pass	and	Pass	Manager
flags	/	Pass	and	Pass	Manager

PBQP	Register	Allocator
about	/	Register	allocation

PHI	instruction	/	Emitting	if-else	condition	IR

R
register	allocated	local	variables

about	/	Getting	familiar	with	LLVM	IR
register	allocation

about	/	Register	allocation
register	allocation,	for	mapping	virtual	registers	to	physical	registers

Direct	Mapping	/	Register	allocation
Indirect	Mapping	/	Register	allocation

register	allocation	techniques,	LLVM
Basic	Register	Allocator	/	Register	allocation
Fast	Register	Allocator	/	Register	allocation
PBQP	Register	Allocator	/	Register	allocation
Greedy	Register	Allocator	/	Register	allocation

registers
defining	/	Defining	registers	and	register	sets

registers	set
defining	/	Defining	registers	and	register	sets

Return	statement
emitting	/	Emitting	a	return	statement

S
sample	backend

about	/	Sample	backend
registers,	defining	/	Defining	registers	and	register	sets
registers	sets,	defining	/	Defining	registers	and	register	sets
calling	convention,	defining	/	Defining	the	calling	convention

scalar
inserting,	into	vector	/	Inserting	a	scalar	into	a	vector
extracting,	from	vector	/	Extracting	a	scalar	from	a	vector

scalar	evolution
about	/	Scalar	evolution

SelectionDAG
legalizing	/	Legalizing	SelectionDAG
optimizing	/	Optimizing	SelectionDAG

selectionDAG
IR,	converting	to	/	Converting	IR	to	selectionDAG

simple	arithmetic	statement
emitting,	in	basic	block	/	Emitting	a	simple	arithmetic	statement	in	a	basic	block

Single-instruction	multiple-data	(SIMD)
about	/	Vectorization

single	instruction	multiple	data	(SIMD)	/	Inserting	a	scalar	into	a	vector
SLP	Vectorization

about	/	Vectorization
spilling

about	/	Register	allocation
stack	allocated	local	variables

about	/	Getting	familiar	with	LLVM	IR
static	single	assignment	(SSA)	/	Getting	familiar	with	LLVM	IR
Superword-Level	Parallelism	(SLP)

about	/	Vectorization

T
tablegen	tool

about	/	Modular	design	and	collection	of	libraries,	Defining	registers	and
register	sets
reference	link	/	Defining	registers	and	register	sets

TargetTransformInfo	(TTI)
about	/	Vectorization

V
vector

scalar,	inserting	into	/	Inserting	a	scalar	into	a	vector
scalar,	extracting	from	/	Extracting	a	scalar	from	a	vector

vectorization
about	/	Vectorization

virtual	methods,	Pass	class
doInitialization	/	Pass	and	Pass	Manager
runOn{Passtype}	/	Pass	and	Pass	Manager
doFinalization	/	Pass	and	Pass	Manager

	LLVM Essentials
	Credits
	About the Authors
	About the Reviewer
	www.PacktPub.com
	Support files, eBooks, discount offers, and more
	Why subscribe?
	Free access for Packt account holders
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Errata
	Piracy
	Questions
	1. Playing with LLVM
	Modular design and collection of libraries
	Getting familiar with LLVM IR
	LLVM tools and using them in the command line
	Summary
	2. Building LLVM IR
	Creating an LLVM module
	Emitting a function in a module
	Adding a block to a function
	Emitting a global variable
	Emitting a return statement
	Emitting function arguments
	Emitting a simple arithmetic statement in a basic block
	Emitting if-else condition IR
	Emitting LLVM IR for loop
	Summary
	3. Advanced LLVM IR
	Memory access operations
	Getting the address of an element
	Reading from the memory
	Writing into a memory location
	Inserting a scalar into a vector
	Extracting a scalar from a vector
	Summary
	4. Basic IR Transformations
	Opt Tool
	Pass and Pass Manager
	Using other Pass info in current Pass
	AnalysisUsage::addRequired<> method
	AnalysisUsage:addRequiredTransitive<> method
	AnalysisUsage::addPreserved<> method
	Instruction simplification example
	Instruction Combining
	Summary
	5. Advanced IR Block Transformations
	Loop processing
	Scalar evolution
	LLVM intrinsics
	Vectorization
	Summary
	6. IR to Selection DAG phase
	Converting IR to selectionDAG
	Legalizing SelectionDAG
	Optimizing SelectionDAG
	Instruction Selection
	Scheduling and emitting machine instructions
	Register allocation
	Code Emission
	Summary
	7. Generating Code for Target Architecture
	Sample backend
	Defining registers and register sets
	Defining the calling convention
	Defining the instruction set
	Implementing frame lowering
	Lowering instructions
	Printing an instruction
	Summary
	Index

