Become familiar with the LLVM infrastructure and start using

LLVM libraries to design a compiler

LLVM Essentials

LLLLVM Essentials

Table of Contents

LLVM Essentials
Credits
About the Authors

About the Reviewer

www.PacktPub.com

Support files, eBooks, discount offers, and more
Why subscribe?

Free access for Packt account holders

Preface

What this book covers

What vou need for this book
Who this book is for

Conventions

Reader feedback

Customer support
Downloading the example code
Errata
Piracy
Questions
1. Playing with LLVM

Modular design and collection of libraries

Getting familiar with LLVM IR
LLVM tools and using them in the command line

Summary
2. Building LILVM IR
Creating an LILVM module

Emitting a function in a module

Adding a block to a function

Emitting a global variable

Emitting a return statement

Emitting function arguments

Emitting a simple arithmetic statement in a basic block
Emitting if-else condition IR

Emitting LILVM IR for loop

Summary
3. Advanced LLVM IR

Memory access operations
Getting the address of an element
Reading from the memory
Writing into a memory location
Inserting a scalar into a vector
Extracting a scalar from a vector
Summary

4. Basic IR Transformations

Opt Tool
Pass and Pass Manager

Using other Pass info in current Pass
AnalysisUsage::addRequired<> method

AnalysisUsage:addRequiredTransitive<> method

AnalysisUsage::addPreserved<> method

Instruction simplification example

Instruction Combining
Summary

5. Advanced IR Block Transformations

Loop processing
Scalar evolution

LLVM intrinsics

Vectorization

Summary
6. IR to Selection DAG phase

Converting IR to selectionDAG

Legalizing SelectionDAG

Optimizing SelectionDAG

Instruction Selection

Scheduling and emitting machine instructions
Register allocation

Code Emission

Summary
7. Generating Code for Target Architecture

Sample backend
Defining registers and register sets
Defining the calling convention
Defining the instruction set

Implementing frame lowering

Lowering instructions

Printing an instruction

Summary

Index

LLLLVM Essentials

LLLLVM Essentials

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2015
Production reference: 1021215
Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78528-080-1

www.packtpub.com

http://www.packtpub.com

Credits

Authors

Suyog Sarda

Mayur Pandey
Reviewer

Renato Golin
Commissioning Editor
Nadeem Bagban
Acquisition Editor
Harsha Bharwani
Content Development Editor
Priyanka Mehta
Technical Editor

Ryan Kochery

Copy Editor

Imon Biswas

Project Coordinator
Izzat Contractor
Proofreader

Safis Editing

Indexer

Tejal Daruwale Soni
Production Coordinator
Aparna Bhagat

Cover Work

Aparna Bhagat

About the Authors

Suyog Sarda is a professional software engineer and an open source enthusiast. He
focuses on compiler development and compiler tools. He is an active contributor to the
LLVM open source community. Suyog was also involved in code performance
improvements for the ARM and X86 architectures. He has been a part of the compiler
team for the Tizen project. His interest in compiler development lies more in code
optimization and vectorization.

Previously, he has authored a book on LLVM, titled LLVM Cookbook by Packt Publishing.

Apart from compilers, Suyog is also interested in Linux Kernel Development. He has
published a technical paper titled Secure Co-resident Virtualization in Multicore Systems
by VM Pinning and Page Coloring at the IEEE Proceedings of the 2012 International
Conference on Cloud Computing, Technologies, Applications, and Management at the
Birla Institute of Technology, Dubai. He has earned a bachelor’s degree in computer
technology from the College of Engineering, Pune, India.

I would like to thank my family and friends for encouraging me to write this book. I am
thankful to my co-author and reviewers who did a tremendous job of refining the contents.
I would also like to thank the LLVM open source community for always being helpful. It
has been a great experience to interact with the community. It is amazing to see how fast
LLVM has evolved.

Mayur Pandey is a professional software engineer and open source enthusiast focused on
compiler development and tools. He is an active contributor to the LLVM open source
community. He has been a part of the compiler team for the Tizen project and has hands-
on experience of other proprietary compilers.

He has earned a bachelor’s degree in Information Technology from Motilal Nehru
National Institute of Technology, Allahabad, India. Currently, he lives in Bengaluru, India.

I would like to thank my family and friends who made it possible for me to complete the
book by taking care of my other commitments, and who have always being encouraging.

About the Reviewer

Renato Golin has worked with toolchains since 2008, developing debuggers and
compilers for multiple languages and platforms, and has also been LLVM Tech Lead at
ARM and Linaro, focusing on code generation, correctness, performance, and providing a
complete toolchain solution based on LLVM for the diverse ARM platforms.

Before that, he spent a decade moving between web back-ends, databases, distributed
systems, big data and bioinformatics, always working on and with open source projects.

www.PacktPub.com

Support files, eBooks, discount offers, and
more

For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as
a print book customer, you are entitled to a discount on the eBook copy. Get in touch with
us at <service@packtpub.com> for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

IE\ PACKT!L E°

https://www?2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt’s online digital
book library. Here, you can search, access, and read Packt’s entire library of books.

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

Why subscribe?

e Fully searchable across every book published by Packt
e Copy and paste, print, and bookmark content
e On demand and accessible via a web browser

Free access for Packt account holders

If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

http://www.PacktPub.com

Preface

LLVM is one of the very hot topics in recent times. It is an open source project with an
ever-increasing number of contributors. Every programmer comes across a compiler at
some point or the other while programming. Simply speaking, a compiler converts a high-
level language to machine-executable code. However, what goes on under the hood is a lot
of complex algorithms at work. So, to get started with compiler, LLVM will be the
simplest infrastructure to study. Written in object-oriented C++, modular in design, and
with concepts that are very easy to map to theory, LLVM proves to be attractive for
experienced compiler programmers and for novice students who are willing to learn.

As authors, we maintain that simple solutions frequently work better and are easier to
grasp than complex solutions. Throughout the book we will look at various topics that will
help you enhance your skills and drive you to learn more.

We also believe that this book will be helpful for people not directly involved in compiler
development as knowledge of compiler development will help them write code optimally.

What this book covers

Chapter 1, Playing with LLVM, introduces you to the modular design of LLVM and
LLVM Intermediate Representation. In this chapter, we also look into some of the tools
that LLVM provides.

Chapter 2, Building LLVM IR, introduces you to some basic function calls provided by the
LLVM infrastructure to build LLVM IR. This chapter demonstrates building of modules,
functions, basic blocks, condition statements, and loops using LLVM APIs.

Chapter 3, Advanced LLVM IR, introduces you to some advanced IR paradigms. This
chapter explains advanced IR to the readers and shows how LLVM function calls can be
used to emit them in the IR.

Chapter 4, Basic IR Transformations, deals with basic transformation optimizations at the
IR level using the LLVM optimizer tool opt and the LLVM Pass infrastructure. You will
learn how to use the information of one pass in another and then look into Instruction
Simplification and Instruction Combining Passes.

Chapter 5, Advanced IR Block Transformations, deals with optimizations at block level on
IR. We will discuss various optimizations such as Loop Optimizations, Scalar Evolution,
Vectorization, and so on, followed by the summary of this chapter.

Chapter 6, IR to Selection DAG phase, takes you on a journey through the abstract

infrastructure of a target-independent code generator. We explore how LLVM IR is
converted to Selection DAG and various phases thereafter. It also introduces you to
instruction selection, scheduling, register allocation, and so on.

Chapter 7, Generating Code for Target Architecture, introduces the readers to the tablegen
concept. It shows how target architecture specifications such as register sets, instruction
sets, calling conventions, and so on can be represented using tablegen, and how the output
of tablegen can be used to emit code for a given architecture. This chapter can be used by
readers as a reference for bootstrapping a target machine code generator.

What you need for this book

All you need to work through most of the examples covered in this book is a Linux
machine, preferably Ubuntu. You will also need a simple text or code editor, Internet
access, and a browser. We recommend installing the meld tool to compare two files; it
works well on the Linux platform.

Who this book is for

This book is intended for those who already know some of the concepts concerning
compilers and want to quickly become familiar with LLVM’s infrastructure and the rich
set of libraries that it provides. Compiler programmers, who are familiar with concepts of
compilers and want to indulge in understanding, exploring, and using the LLVM
infrastructure in a meaningful way in their work, will find this book useful.

This book is also for programmers who are not directly involved in compiler projects but
are often involved in development phases where they write thousands of lines of code.
With knowledge of how compilers work, they will be able to code in an optimal way and
improve performance with clean code.

Conventions

In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their
meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLSs, user input, and Twitter handles are shown as follows: “The
LLVM pPass Manager uses the explicitly mentioned dependency information.”

A block of code is set as follows:

int add(int a) {
return globvar + a;

}

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

Value *StartVal = Builder.getInt32(1);
Value *Res = createLoop(Builder, List, VL, StartVal, Arg2);

Builder.CreateRet(Res);

Any command-line input or output is written as follows:

$ clang -emit-1llvm -c -S add.c
$ cat add.1ll

New terms and important words are shown in bold. Words that you see on the screen,
for example, in menus or dialog boxes, appear in the text like this: “Clicking the Next
button moves you to the next screen.”

Note

Warnings or important notes appear in a box like this.
Tip
Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or disliked. Reader feedback is important for us as it helps us
develop titles that you will really get the most out of.

To send us general feedback, simply e-mail <feedback@packtpub.com>, and mention the
book’s title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help
you to get the most from your purchase.

Downloading the example code

You can download the example code files from your account at http://www.packtpub.com
for all the Packt Publishing books you have purchased. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have the files e-
mailed directly to you.

http://www.packtpub.com
http://www.packtpub.com/support

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you could report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you find
any errata, please report them by visiting http://www.packtpub.com/submit-errata,
selecting your book, clicking on the Errata Submission Form link, and entering the
details of your errata. Once your errata are verified, your submission will be accepted and
the errata will be uploaded to our website or added to any list of existing errata under the
Errata section of that title.

To view the previously submitted errata, go to
https://www.packtpub.com/books/content/support and enter the name of the book in the
search field. The required information will appear under the Errata section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy

Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at <copyright@packtpub.com> with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

mailto:copyright@packtpub.com

Questions

If you have a problem with any aspect of this book, you can contact us at
<guestions@packtpub.com>, and we will do our best to address the problem.

mailto:questions@packtpub.com

Chapter 1. Playing with LLVM

The LLVM Compiler infrastructure project, started in 2000 in University of Illinois, was
originally a research project to provide modern, SSA based compilation technique for
arbitrary static and dynamic programming languages. Now it has grown to be an umbrella
project with many sub projects within it, providing a set of reusable libraries having well
defined interfaces.

LLVM is implemented in C++ and the main crux of it is the LLVM core libraries it
provides. These libraries provide us with opt tool, the target independent optimizer, and
code generation support for various target architectures. There are other tools which make
use of core libraries, but our main focus in the book will be related to the three mentioned
above. These are built around LLVM Intermediate Representation (LLVM IR), which can
almost map all the high-level languages. So basically, to use LLVM’s optimizer and code
generation technique for code written in a certain programming language, all we need to
do is write a frontend for a language that takes the high level language and generates
LLVM IR. There are already many frontends available for languages such as C, C++, Go,
Python, and so on. We will cover the following topics in this chapter:

e Modular design and collection of libraries
e Getting familiar with LLVM IR
e LLVM Tools and using them at command line

Modular design and collection of libraries

The most important thing about LLVM is that it is designed as a collection of libraries.
Let’s understand these by taking the example of LLVM optimizer opt. There are many
different optimization passes that the optimizer can run. Each of these passes is written as
a C++ class derived from the Pass class of LLVM. Each of the written passes can be
compiled into a .o file and subsequently they are archived into a .a library. This library
will contain all the passes for opt tool. All the passes in this library are loosely coupled,
that is they mention explicitly the dependencies on other passes.

When the optimizer is ran, the LLVM PassManager uses the explicitly mentioned
dependency information and runs the passes in optimal way. The library based design
allows the implementer to choose the order in which passes will execute and also choose
which passes are to be executed based on the requirements. Only the passes that are
required are linked to the final application, not the entire optimizer.

The following figure demonstrates how each pass can be linked to a specific object file
within a specific library. In the following figure, the PassA references LLVMPasses.a for
PassA.o, whereas the custom pass refers to a different library MyPasses.a for the
MyPass.o object file.

‘ PassA.o ‘ ‘ PassC.o

, ‘ PassB.o *:'.}‘ PassD.o

LIVMPasses.a

MyOptimizer.cpp

PassManager PM; /
PM.add|createPassA(}); //
PM.add(createPassB());

PM.add(createMYPass()):

—

MyPasses.a

The code generator also makes use of this modular design like the Optimizer, for splitting
the code generation into individual passes, namely, instruction selection, register
allocation, scheduling, code layout optimization, and assembly emission.

In each of the following phases mentioned there are some common things for almost every
target, such as an algorithm for assigning physical registers available to virtual registers
even though the set of registers for different targets vary. So, the compiler writer can
modify each of the passes mentioned above and create custom target-specific passes. The
use of the tablegen tool helps in achieving this using table description . td files for

specific architectures. We will discuss how this happens later in the book.

Another capability that arises out of this is the ability to easily pinpoint a bug to a
particular pass in the optimizer. A tool name Bugpoint makes use of this capability to
automatically reduce the test case and pinpoint the pass that is causing the bug.

Getting familiar with LLVM IR

LLVM Intermediate Representation (IR) is the heart of the LLVM project. In general
every compiler produces an intermediate representation on which it runs most of its
optimizations. For a compiler targeting multiple-source languages and different
architectures the important decision while selecting an IR is that it should neither be of
very high-level, as in very closely attached to the source language, nor it should be very
low-level, as in close to the target machine instructions. LLVM IR aims to be a universal
IR of a kind, by being at a low enough level that high-level ideas may be cleanly mapped
to it. Ideally the LLVM IR should have been target-independent, but it is not so because of
the inherent target dependence in some of the programming languages itself. For example,
when using standard C headers in a Linux system, the header files itself are target
dependent, which may specify a particular type to an entity so that it matches the system
calls of the particular target architecture.

Most of the LLVM tools revolve around this Intermediate Representation. The frontends
of different languages generate this IR from the high-level source language. The optimizer
tool of LLVM runs on this generated IR to optimize the code for better performance and
the code generator makes use of this IR for target specific code generation. This IR has
three equivalent forms:

¢ An in-memory compiler IR
e An on-disk bitcode representation
¢ A Human readable form (LLVM Assembly)

Now let’s take an example to see how this LLVM IR looks like. We will take a small C
code and convert it into LLVM IR using clang and try to understand the details of LLVM
IR by mapping it back to the source language.

$ cat add.c
int globvar = 12;

int add(int a) {
return globvar + a;

}
Use the clang frontend with the following options to convert it to LLVM IR:

$ clang -emit-1llvm -c -S add.c

$ cat add.1ll

; ModuleID = 'add.c'

target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128"
target triple = "x86_64-unknown-linux-gnu"

@globvar = global 132 12, align 4

; Function Attrs: nounwind uwtable
define i32 @add(i32 %a) #0 {

%1 = alloca 132, align 4

store 132 %a, 1i32* %1, align 4

%2 = load 132, i32* @globvar, align 4

%3 load i32, i32* %1, align 4
%4 add nsw i32 %2, %3
ret 132 %4

}

attributes #0 = { nounwind uwtable "less-precise-fpmad"="false" "no-frame-
pointer-elim"="true" "no-frame-pointer-elim-non-leaf" "no-infs-fp-

math"="false" "no-nans-fp-math"="false" "stack-protector-buffer-size"="8"
"target-cpu"="x86-64" "unsafe-fp-math"="false" "use-soft-float"="false" }

111lvm.ident = !{!0}

Now let’s look at the IR generated and see what it is all about. You can see the very first
line giving the ModulelD, that it defines the LLVM module for add.c file. An LLVM
module is a top—level data structure that has the entire contents of the input LLVM file. It
consists of functions, global variables, external function prototypes, and symbol table
entries.

The following lines show the target data layout and target triple from which we can know
that the target is x86_64 processor with Linux running on it. The datalayout string tells
us what is the endianess of machine (‘e meaning little endian), and the name mangling (m
: e denotes elf type). Each specification is separated by ‘-‘and each following spec gives
information about the type and size of that type. For example, 164:64 says 64 bit integer is
of 64 bits.

Then we have a global variable globvar. In LLVM IR all globals start with ‘@‘ and all
local variables start with ‘%‘. There are two main reasons why the variables are prefixed
with these symbols. The first one being, the compiler won’t have to bother about a name
clash with reserved words, the other being that the compiler can come up quickly with a
temporary name without having to worry about a conflict with symbol table conflicts. This
second property is useful for representing the IR in static single assignment (SSA) from
where each variable is assigned only a single time and every use of a variable is preceded
by its definition. So, while converting a normal program to SSA form, we create a new
temporary name for every redefinition of a variable and limit the range of earlier
definition till this redefinition.

LLVM views global variables as pointers, so an explicit dereference of the global variable
using load instruction is required. Similarly, to store a value, an explicit store instruction is
required.

Local variables have two categories:

e Register allocated local variables: These are the temporaries and allocated virtual
registers. The virtual registers are allocated physical registers during the code
generation phase which we will see in a later chapter of the book. They are created by
using a new symbol for the variable like:

%1 = some value

e Stack allocated local variables: These are created by allocating variables on the
stack frame of a currently executing function, using the alloca instruction. The

alloca instruction gives a pointer to the allocated type and explicit use of load and
store instructions is required to access and store the value.

%2 = alloca i32

Now let’s see how the add function is represented in LLVM IR. define i32 @add(i32
%a) is very similar to how functions are declared in C. It specifies the function returns
integer type 132 and takes an integer argument. Also, the function name is preceded by
‘@‘, meaning it has global visibility.

Within the function is actual processing for functionality. Some important things to note
here are that LLVM uses a three-address instruction, that is a data processing instruction,
which has two source operands and places the result in a separate destination operand (%4
= add i32 %2, %3). Also the code is in SSA form, that is each value in the IR has a single
assignment which defines the value. This is useful for a number of optimizations.

The attributes string that follows in the generated IR specifies the function attributes
which are very similar to C++ attributes. These attributes are for the function that has been
defined. For each function defined there is a set of attributes defined in the LLVM IR.

The code that follows the attributes is for the ident directive that identifies the module
and compiler version.

LLVM tools and using them in the
command line

Until now, we have understood what LLVM IR (human readable form) is and how it can
be used to represent a high-level language. Now, we will take a look at some of the tools
that LLVM provides so that we can play around with this IR converting to other formats
and back again to the original form. Let’s take a look at these tools one by one along with
examples.

e llvm-as: This is the LLVM assembler that takes LLVM IR in assembly form (human
readable) and converts it to bitcode format. Use the preceding add.11 as an example
to convert it into bitcode. To know more about the LLVM Bitcode file format refer to

http://llvm.org/docs/BitCodeFormat.html
$ llvm-as add.1ll -o add.bc

To view the content of this bitcode file, a tool such as hexdump can be used.

$ hexdump -c add.bc

¢ llvim-dis: This is the LLVM disassembler. It takes a bitcode file as input and outputs
the llvim assembly.

$ 1llvm-dis add.bc -o add.ll

If you check add.11 and compare it with the previous version, it will be the same as
the previous one.

¢ llvm-link: llvm-link links two or more llvm bitcode files and outputs one llvm
bitcode file. To view a demo write a main. c file that calls the function in the add.c
file.

$ cat main.c
#include<stdio.h>

extern int add(int);

int main() {

int a = add(2);
printf("%d\n",a);
return 0;

}

Convert the C source code to LLVM bitcode format using the following command.
$ clang -emit-1llvm -c main.c
Now link main.bc and add.bc to generate output.bc.

$ 1llvm-1link main.bc add.bc -o output.bc

e lli: 1li directly executes programs in LLVM bitcode format using a just-in-time
compiler or interpreter, if one is available for the current architecture. lli is not like a

http://llvm.org/docs/BitCodeFormat.html

virtual machine and cannot execute IR of different architecture and can only interpret
for host architecture. Use the bitcode format file generated by llvm-link as input to
1li. It will display the output on the standard output.

$ 11i output.bc
14

llc: llc is the static compiler. It compiles LLVM inputs (assembly form/ bitcode form)
into assembly language for a specified architecture. In the following example it takes
the output.bc file generated by llvm-link and generates the assembly file output.s.

$ 1lc output.bc -0 output.s

Let’s look at the content of the output.s assembly, specifically the two functions of
the generated code, which is very similar to what a native assembler would have
generated.

Function main:
.type main,@function
main: # @main
.cfi_startproc
BB#0:
pushqg %rbp
.Ltmpo:
.cfi_def_cfa_offset 16
.Ltmpl:
.cfi_offset %rbp, -16
movq %rsp, %rbp
.Ltmp2:
.cfi_def_cfa_register %rbp
subq $16, %rsp
movl $0, -4(%rbp)
movl $2, %edi
callg add
movl %eax, %ecx
movl %ecx, -8(%rbp)
movl $.L.str, %edi
xorl %eax, %eax
movl %ecx, %esi
callg printf
xorl %eax, %eax
addq $16, %rsp
popq %rbp
retq
.Lfunc_endo:

Function: add

add: # @add
.cfi_startproc

BB#0:
pushqg %rbp

.Ltmp3:

.cfi_def_cfa_offset 16
.Ltmp4:

.cfi_offset %rbp, -16
movq %rsp, %rbp

.Ltmp5:
.cfi_def_cfa_register %rbp
movl %edi, -4(%rbp)
addl globvar(%rip), %edi
movl %edi, %eax
popg %rbp
retq

.Lfunc_end1:

e opt: This is modular LLVM analyzer and optimizer. It takes the input file and runs
the optimization or analysis specified on the command line. Whether it runs the
analyzer or optimizer depends on the command-line option.

opt [options] [input file name]

When the -analyze option is provided it performs various analysis on the input.
There is a set of analysis options already provided that can be specified through
command line or else one can write down their own analysis pass and provide the
library to that analysis pass. Some of the useful analysis passes that can be specified
using the following command line arguments are:

basicaa: basic alias analysis

da: dependence analysis

instcount: count the various instruction types.
loops: information about loops

scalar evolution: analysis of scalar evolution

O O O O O

When the -analyze option is not passed, the opt tool does the actual optimization
work and tries to optimize the code depending upon the command-line options
passed. Similarly to the preceding case, you can use some of the optimization passes
already present or write your own pass for optimization. Some of the useful
optimization passes that can be specified using the following command-line
arguments are:

constprop: simple constant propagation.

dce: dead code elimination pass

globalopt: pass for global variable optimization
inline: pass for function inlining

instcombine: for combining redundant instructions
licm: loop invariant code motion

tailcallelim: Tail Call elimination

O O O O O o o

Note

Before going ahead we must note that all the tools mentioned in this chapter are meant for
compiler writers. An end user can directly use clang for compilation of C code without
converting the C code into intermediate representation

Tip

Downloading the example code

You can download the example code files from your account at http://www.packtpub.com
for all the Packt Publishing books you have purchased. If you purchased this book

elsewhere, you can visit http://www.packtpub.com/support and register to have the files e-
mailed directly to you.

http://www.packtpub.com
http://www.packtpub.com/support

Summary

In this chapter, we looked into the modular design of LLVM: How it is used in the opt tool
of LLVM, and how it is applicable across LLVM core libraries. Then we took a look into
LLVM intermediate representation, and how various entities (variables, functions etc.) of a
language are mapped to LLVM IR. In the last section, we discussed about some of the
important LLVM tools, and how they can be used to transform the LLVM IR from one
form to another.

In the next chapter, we will see how we can write a frontend for a language that can output
LLVM IR using the LLVM machinery.

Chapter 2. Building LLVM IR

A high level programming language facilitates human interaction with the target machine.
Most of the popular high level languages today have certain basic elements such as
variables, loops, if-else decision making statements, blocks, functions, and so on. A
variable holds value of data types; a basic block gives an idea of the scope of the variable.
An if-else decision statement helps in selection of a path of code. A function makes a
block of code reusable. High level languages may vary in type checking, type casting,
variable declarations, complex data types, and so on. However, almost every other
language has the basic building blocks listed earlier in this section.

A language may have its own parser which tokenizes the statement and extracts
meaningful information such as identifier, its data type; a function name, its declaration,
definition and calls; a loop condition, and so on. This meaningful information may be
stored in a data structure where the flow of the code can be easily retrieved. Abstract
Syntax Tree (AST) is a popular tree representation of the source code. The AST’s can be
used for further transformation and analysis.

A language parser can be written in various ways with various tools such as lex, yacc, and
so on, or can even be handwritten. Writing an efficient parser is an art in itself. But this is
not what we intend to cover in this chapter. We would like to focus more on LLVM IR and
how a high-level language after parsing can be converted to LLVM IR using LLVM
libraries.

This chapter will cover how to construct basic working LLVM sample code, which
includes the following:

Creating an LLVM module

Emitting a function in a module

Adding a block to a function

Emitting a global variable

Emitting a return statement

Emitting function arguments

Emitting a simple arithmetic statement in a basic block
Emitting if-else condition IR

Emitting LLVM IR for loops

Creating an LLVM module

In the previous chapter, we got an idea as to how an LLVM IR looks. In LLVM, a module
represents a single unit of code that is to be processed together. An LLVM module class is
the top-level container for all other LLVM IR objects. The LLVM module contains global
variables, functions, data layout, host triples, and so on. Let’s create a simple LLVM
module.

LLVM provides Module () constructor for creating a module. The first argument is the
name of the module. The second argument is LLvVMContext. Let’s get these arguments in
the main function and create a module as demonstrated here:

static LLVMContext &Context = getGlobalContext();
static Module *ModuleOb = new Module("my compiler", Context);

For these functions to work, we need to include certain header files:

#include "llvm/IR/LLVMContext.h"

#include "llvm/IR/Module.h"

using namespace 1llvm;

static LLVMContext &Context = getGlobalContext();

static Module *ModuleOb = new Module("my compiler", Context);

int main(int argc, char *argv[]) {
ModuleOb->dump();
return 0O;

}

Put this code in a file, let’s say toy.cpp and compile it:

$ clang++ -03 toy.cpp "llvm-config --cxxflags --ldflags --system-libs --
libs core” -0 toy
$./toy

The output will be as follows:

; ModuleID = 'my compiler'

Emitting a function in a module

Now that we have created a module, the next step is to emit a function. LLVM has an
IRBuilder class that is used to generate LLVM IR and print it using the dump function of
the Module object. LLVM provides the class 11vm: : Function to create a function and
11lvm: :FunctionType() to associate a return type for the function. Let’s assume that our
foo() function returns an integer type.

Function *createFunc(IRBuilder<> &Builder, std::string Name) {
FunctionType *funcType = llvm::FunctionType::get(Builder.getInt32Ty(),
false);
Function *fooFunc = llvm::Function::Create(
funcType, llvm::Function::ExternalLinkage, Name, ModuleOb);
return fooFunc;

}

Finally, call function verifyFunction() on fooFunc. This function performs a variety of
consistency checks on the generated code, to determine if our compiler is doing
everything right.

int main(int argc, char *argv[]) {
static IRBuilder<> Builder(Context);
Function *fooFunc = createFunc(Builder, "foo");
verifyFunction(*fooFunc);
ModuleOb->dump();
return 0O;

3
Add the IR/IRBuilder.h, IR/DerivedTypes.h and IR/Verifier.h file in include section.

The overall code is as follows:

#include "1llvm/IR/IRBuilder.h"
#include "1llvm/IR/LLVMContext.h"
#include "1llvm/IR/Module.h"
#include "1llvm/IR/Verifier.h"
#include <vector>

using namespace llvm;

static LLVMContext &Context = getGlobalContext();
static Module *ModuleOb = new Module('"my compiler", Context);

Function *createFunc(IRBuilder<> &Builder, std::string Name) {
FunctionType *funcType = llvm::FunctionType: :get(Builder.getInt32Ty(),
false);
Function *fooFunc = llvm::Function::Create(
funcType, 1llvm::Function::ExternallLinkage, Name, ModuleOb);
return fooFunc;

}

int main(int argc, char *argv[]) {
static IRBuilder<> Builder(Context);
Function *fooFunc = createFunc(Builder, "foo");
verifyFunction(*fooFunc);

ModuleOb->dump();
return 0O,

}

Compile the toy.cpp with the same options as stated earlier:

$ clang++ -03 toy.cpp "llvm-config --cxxflags --ldflags --system-libs --
libs core™ -0 toy

The output will be as follows:

$./toy
; ModuleID = 'my compiler'

declare i32 @foo()

Adding a block to a function

A function consists of basic blocks. A basic block has an entry point. A basic block
consists of a number of IR instructions, the last instruction being a terminator instruction.
It has single exit point. LLVM provides the BasicBlock class to create and handle basic
blocks. A basic block might have an entry point as its label, which indicates where to
insert the next instructions. We can use the IRBuilder object to hold these new basic
block IR.

BasicBlock *createBB(Function *fooFunc, std::string Name) {
return BasicBlock::Create(Context, Name, fooFunc);
}

The overall code is as follows:

#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/LLVMContext.h"
#include "1llvm/IR/Module.h"
#include "llvm/IR/Verifier.h"
#include <vector>

using namespace llvm;

static LLVMContext &Context = getGlobalContext();
static Module *ModuleOb = new Module("my compiler", Context);

Function *createFunc(IRBuilder<> &Builder, std::string Name) {
FunctionType *funcType = llvm::FunctionType::get(Builder.getInt32Ty(),
false);
Function *fooFunc = llvm::Function: :Create(
funcType, 1llvm::Function::ExternallLinkage, Name, ModuleOb);
return fooFunc;

}

BasicBlock *createBB(Function *fooFunc, std::string Name) {
return BasicBlock::Create(Context, Name, fooFunc);

}

int main(int argc, char *argv[]) {
static IRBuilder<> Builder(Context);
Function *fooFunc = createFunc(Builder, "foo");
BasicBlock *entry = createBB(fooFunc, "entry");
Builder.SetInsertPoint(entry);
verifyFunction(*fooFunc);
ModuleOb->dump();
return 0;

}
Compile the toy.cpp file:

$ clang++ -03 toy.cpp "llvm-config --cxxflags --ldflags --system-libs --
libs core” -0 toy

The output will be as follows:

; ModuleID = 'my compiler'

define 132 @foo() {
entry:

}

Emitting a global variable

Global variables have visibility of all the functions within a given module. LLVM
provides the Globalvariable class to create global variables and set its properties such as
linkage type, alignment, and so on. The Module class has the method
getOrInsertGlobal() to create a global variable. It takes two arguments—the first is the
name of the variable and the second is the data type of the variable.

As global variables are part of a module, we create global variables after creating the
module. Insert the following code just after creating the module in toy.cpp:

Globalvariable *createGlob(IRBuilder<> &Builder, std::string Name) {
ModuleOb->getOrInsertGlobal(Name, Builder.getInt32Ty());
Globalvariable *gVar = ModuleOb->getNamedGlobal(Name);
gvar->setLinkage(Globalvalue: :CommonLinkage);
gvar->setAlignment(4);
return gvar;

}

Linkage is what determines if multiple declarations of the same object refer to the same
object, or to separate ones. The LLVM reference manual cites the following types of
Linkages:

Externallinkage Externally visible function. |
AvailableExternallylLinkage|lAvailable for inspection, not emission. |
LinkOnceAnyLinkage Keep one copy of function when linking (inline) |
LinkOnceODRLinkage Same, but only replaced by something equivalent. |
WeakAnyLinkage Keep one copy of named function when linking (weak)
WeakODRLinkage Same, but only replaced by something equivalent. |
AppendinglLinkage Special purpose, only applies to global arrays. |
Internallinkage Rename collisions when linking (static functions). |
PrivatelLinkage ||Like internal, but omit from symbol table. |
ExternalWeakLinkage ExternalWeak linkage description. |
CommonLinkage Tentative definitions |

Alignment gives information about address alignment. An alignment must be a power of
2. If not specified explicitly, it is set by the target. The maximum alignment is 1 << 29.

The overall code is as follows:

#include "1llvm/IR/IRBuilder.h"
#include "llvm/IR/LLVMContext.h"

#include "1llvm/IR/Module.h"
#include "llvm/IR/Verifier.h"
#include <vector>

using namespace llvm;

static LLVMContext &Context = getGlobalContext();
static Module *ModuleOb = new Module("my compiler", Context);

Function *createFunc(IRBuilder<> &Builder, std::string Name) {
FunctionType *funcType = llvm::FunctionType::get(Builder.getInt32Ty(),
false);
Function *fooFunc = llvm::Function::Create(
funcType, llvm::Function::ExternalLinkage, Name, ModuleOb);
return fooFunc;

}

BasicBlock *createBB(Function *fooFunc, std::string Name) {
return BasicBlock::Create(Context, Name, fooFunc);
}

Globalvariable *createGlob(IRBuilder<> &Builder, std::string Name) {
ModuleOb->getOrInsertGlobal(Name, Builder.getInt32Ty());
Globalvariable *gVar = ModuleOb->getNamedGlobal(Name);
gvar->setLinkage(Globalvalue: :CommonLinkage);
gvar->setAlignment(4);
return gvar;

}

int main(int argc, char *argv([]) {
static IRBuilder<> Builder(Context);
Globalvariable *gvar = createGlob(Builder, "x");
Function *fooFunc = createFunc(Builder, "foo");
BasicBlock *entry = createBB(fooFunc, "entry");
Builder.SetInsertPoint(entry);
verifyFunction(*fooFunc);
ModuleOb->dump();
return 0O;

}
Compile the toy.cpp:

$ clang++ -03 toy.cpp "llvm-config --cxxflags --ldflags --system-libs --
libs core” -0 toy

The output will be as follows:
; ModuleID = 'my compiler'
@x = common global i32, align 4

define 132 @foo() {
entry:

}

Emitting a return statement

A function might return a value or it may return void. Here in our example, we have
defined that our function returns an integer. Let’s assume that our function returns 0. The
first step is to get a 0 value, which can be done using the Constant class.

Builder.CreateRet(Builder.getInt32(0));

The overall code is as follows:

#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/LLVMContext.h"
#include "1llvm/IR/Module.h"
#include "llvm/IR/Verifier.h"
#include <vector>

using namespace 1llvm;

static LLVMContext &Context = getGlobalContext();
static Module *ModuleOb = new Module("my compiler", Context);

Function *createFunc(IRBuilder<> &Builder, std::string Name) {
FunctionType *funcType = llvm::FunctionType::get(Builder.getInt32Ty(),
false);
Function *fooFunc = llvm::Function: :Create(
funcType, 1llvm::Function::ExternallLinkage, Name, ModuleOb);
return fooFunc;

}

BasicBlock *createBB(Function *fooFunc, std::string Name) {
return BasicBlock::Create(Context, Name, fooFunc);
}

Globalvariable *createGlob(IRBuilder<> &Builder, std::string Name) {
ModuleOb->getOrInsertGlobal(Name, Builder.getInt32Ty());
Globalvariable *gvVar = ModuleOb->getNamedGlobal(Name);
gvVar->setLinkage(GlobalVvalue: :CommonLinkage);
gvar->setAlignment(4);
return gvar;

}

int main(int argc, char *argv[]) {
static IRBuilder<> Builder(Context);
Globalvariable *gvar = createGlob(Builder, "x");
Function *fooFunc = createFunc(Builder, "foo");
BasicBlock *entry = createBB(fooFunc, "entry");
Builder.SetInsertPoint(entry);
Builder.CreateRet(Builder.getInt32(0));
verifyFunction(*fooFunc);
ModuleOb->dump();
return 0;

}
Compile toy.cpp file

$ clang++ -03 toy.cpp "llvm-config --cxxflags --ldflags --system-libs --

libs core™ -0 toy

The output will be as follows:

; ModuleID = 'my compiler'

@x = common global i32, align 4
define i32 @foo() {

entry:

ret i32 0
}

Emitting function arguments

A function takes arguments that have their own data type. For simplification, assume that
our function has all the arguments of i32 type (integer 32 bit).

For example, we will consider that two arguments, a and b, are passed to the function. We
will store these two arguments in a vector:

static std::vector <std::string> FunArgs;
FunArgs.push_back("a");
FunArgs.push_back("b");

The next step is to specify that the function will have two arguments. This can be done by
passing the Integer argument to the functiontype.

Function *createFunc(IRBuilder<> &Builder, std::string Name) {
std::vector<Type *> Integers(FunArgs.size(), Type::getInt32Ty(Context));
FunctionType *funcType =

1lvm: :FunctionType: :get(Builder.getInt32Ty(), Integers, false);
Function *fooFunc = llvm::Function::Create(

funcType, llvm::Function::ExternalLinkage, Name, ModuleOb);
return fooFunc;

}

The last step is to set the names of the function arguments. This can be done by Function
argument iterator in a loop, as shown:

void setFuncArgs(Function *fooFunc, std::vector<std::string> FunArgs) {
unsigned Idx = 0;
Function::arg_iterator AI, AE;
for (AI = fooFunc->arg_begin(), AE = fooFunc->arg_end(); AI != AE;
++AI, ++Idx)
AI->setName(FunArgs[Idx]);

}

The overall code is as follows:

#include "llvm/IR/IRBuilder.h"
#include "1llvm/IR/LLVMContext.h"
#include "1llvm/IR/Module.h"
#include "1llvm/IR/Verifier.h"
#include <vector>

using namespace llvm;

static LLVMContext &Context = getGlobalContext();
static Module *ModuleOb = new Module("my compiler", Context);
static std::vector<std::string> FunArgs;

Function *createFunc(IRBuilder<> &Builder, std::string Name) {
std: :vector<Type *> Integers(FunArgs.size(), Type::getInt32Ty(Context));
FunctionType *funcType =
1lvm::FunctionType::get(Builder.getInt32Ty(), Integers, false);
Function *fooFunc = 1llvm::Function::Create(
funcType, 1llvm::Function::ExternallLinkage, Name, ModuleOb);
return fooFunc;

}

void setFuncArgs(Function *fooFunc, std::vector<std::string> FunArgs)

}

BasicBlock *createBB(Function *fooFunc,

}

Globalvariable *createGlob(IRBuilder<> &Builder,

}

unsigned Idx = 0O;
Function::arg_iterator AI, AE;

for (AI = fooFunc->arg begin(), AE = fooFunc->arg_end(); AI != AE;

++AI, ++Idx)
AI->setName(FunArgs[Idx]);

return BasicBlock::Create(Context, Name, fooFunc);

std::string Name) {

std::string Name) {

ModuleOb->getOrInsertGlobal(Name, Builder.getInt32Ty());

Globalvariable *gVar = ModuleOb->getNamedGlobal(Name);

gVar->setLinkage(Globalvalue: :CommonLinkage);
gvar->setAlignment(4);
return gvar;

int main(int argc, char *argv[]) {

}

FunArgs.push_back("a");

FunArgs.push_back("b");

static IRBuilder<> Builder(Context);
Globalvariable *gVvar = createGlob(Builder, "x");
Function *fooFunc = createFunc(Builder, "foo");
setFuncArgs(fooFunc, FunArgs);

BasicBlock *entry = createBB(fooFunc, "entry");
Builder.SetInsertPoint(entry);
Builder.CreateRet(Builder.getInt32(0));
verifyFunction(*fooFunc);

ModuleOb->dump();

return 0O;

Compile the toy.cpp file:

$ clang++ -03 toy.cpp "llvm-config --cxxflags --1ldflags
libs core” -0 toy

The output will be as follows:

14

; ModuleID = 'my compiler'

@x = common global i32, align 4
define i32 @foo(i32 %a, 132 %b) {
entry:

ret i32 0

}

--system-1libs

Emitting a simple arithmetic statement in
a basic block

A basic block consists of a list of instructions. For example, an instruction can be a simple
statement performing tasks based on some simple arithmetic instruction. We will see how
the LLVM API can be used to emit arithmetic instructions.

For example, if we want to multiply first argument a with integer value 16, we will create
a constant integer value 16 with the following API:

Value *constant = Builder.getInt32(16);

We already have a from the function argument list:
Value *Argl = fooFunc->arg_begin();

LLVM provides a rich list of API’s to create binary operations. You can go through the
include/11lvm/IR/IRBuild.h file for more details on the APIs.

Value *createArith(IRBuilder<> &Builder, Value *L, Value *R) {
return Builder.CreateMul(L, R, "multmp");

}
Note

Note that for demo purposes, the preceding function returns multiplication. We leave it to
the readers to make this function more flexible to return any binary operations. You can
explore more binary operations in include/11vm/IR/IRBuild. h.

The whole code now looks as follows:

#include "1llvm/IR/IRBuilder.h"
#include "1llvm/IR/LLVMContext.h"
#include "1llvm/IR/Module.h"
#include "1llvm/IR/Verifier.h"
#include <vector>

using namespace llvm;

static LLVMContext &Context = getGlobalContext();
static Module *ModuleOb = new Module('"my compiler", Context);
static std::vector<std::string> FunArgs;

Function *createFunc(IRBuilder<> &Builder, std::string Name) {
std::vector<Type *> Integers(FunArgs.size(), Type::getInt32Ty(Context));
FunctionType *funcType =

1lvm::FunctionType::get(Builder.getInt32Ty(), Integers, false);
Function *fooFunc = llvm::Function::Create(

funcType, 1llvm::Function::ExternallLinkage, Name, ModuleOb);
return fooFunc;

}

void setFuncArgs(Function *fooFunc, std::vector<std::string> FunArgs) {

}

BasicBlock *createBB(Function *fooFunc,

}

Globalvariable *createGlob(IRBuilder<> &Builder,

}

unsigned Idx = 0;
Function::arg_iterator AI, AE;

for (AI = fooFunc->arg_begin(), AE = fooFunc->arg_end(); AI != AE;

++AI, ++Idx)
AI->setName(FunArgs[Idx]);

return BasicBlock::Create(Context, Name, fooFunc);

std::string Name) {

std::string Name) {

ModuleOb->getOrInsertGlobal(Name, Builder.getInt32Ty());

Globalvariable *gVar = ModuleOb->getNamedGlobal(Name);

gVar->setLinkage(Globalvalue: :CommonLinkage);
gvar->setAlignment(4);
return gvar;

Value *createArith(IRBuilder<> &Builder, Value *L, Value *R) {

}

return Builder.CreateMul(L, R, "multmp"),

int main(int argc, char *argv[]) {

}

FunArgs.push_back("a");

FunArgs.push_back("b");

static IRBuilder<> Builder(Context);
Globalvariable *gVvar = createGlob(Builder, "x");
Function *fooFunc = createFunc(Builder, "foo");
setFuncArgs(fooFunc, FunArgs);

BasicBlock *entry = createBB(fooFunc, "entry");
Builder.SetInsertPoint(entry);

Value *Argl = fooFunc->arg_begin();

Value *constant = Builder.getInt32(16);

Value *val = createArith(Builder, Argl, constant);
Builder.CreateRet(val);
verifyFunction(*fooFunc);

ModuleOb->dump();

return 0O;

Compile the following program:

$ clang++ -03 toy.cpp "llvm-config --cxxflags --1ldflags
libs core” -0 toy

The output will be as follows:

4

@x

ModuleID = 'my compiler'

= common global i32, align 4

define 132 @foo(i32 %a, 132 %b) {
entry:

}

%multmp = mul 132 %a, 16
ret 132 %multmp

--system-1libs --

Did you notice the return value? We returned the multiplication instead of constant 0.

Emitting if-else condition IR

An if-else statement has a condition expression and two code paths to execute, depending
on the condition evaluating to true or false. The condition expression is generally a
comparison statement. Let’s emit a condition statement at the start of the block. For
example, let the condition be like a<100.

Value *val2 = Builder.getInt32(100);
Value *Compare = Builder.CreateICmpULT(val, val2, "cmptmp");

On compilation, we get following output:
; ModuleID = 'my compiler'
@x = common global i32, align 4

define i32 @foo(i32 %a, i32 %b) {

entry:
%multmp = mul i32 %a, 16
%cmptmp = icmp ult i32 %multmp, 100

ret 132 %multmp
}

The next step is to define the then and else block expressions, which will be executed
depending on the result of condition expression “booltmp®“. Here, an important concept of
PHI instruction comes into picture. A phi instruction takes various values coming from
different basic blocks and decides which value to assign depending on the condition
expression.

Two separate basic blocks “ThenBB” and “E1seBB” will be created. Let’s say that the then
expression is ‘add 1 to a’ and else expression is ‘add 2 to a’.

A third block will represent the merge block, which contains the instructions to be
executed at the merging of the then and else blocks. These blocks need to be pushed into
the function foo().

For reusability, we create BasicBlock and Value containers as follows:

typedef SmallVector<BasicBlock *, 16> BBList;
typedef SmallVector<vValue *, 16> Vallist;

Note
Note that Smallvector<> is vector container wrapper provided by LLVM for simplicity.

We also push some of the values in a value* list to process them in the if-else block, as
follows:

Value *Condtn = Builder.CreateICmpNE(Compare, Builder.getInt32(0),
"ifcond");

VallList VL;

VL.push_back(Condtn);

VL.push_back(Argl);

We create three basic blocks and push them in container, as follows:

BasicBlock *ThenBB createBB(fooFunc, "then");
BasicBlock *ElseBB createBB(fooFunc, "else");
BasicBlock *MergeBB = createBB(fooFunc, "ifcont");
BBList List;

List.push_back(ThenBB);

List.push_back(ElseBB);

List.push_back(MergeBB);

We finally create a function to emit the if-else block:

Value *createIfElse(IRBuilder<> &Builder, BBList List, VallList VL) {
Value *Condtn = VL[O];
Value *Argl = VL[1];
BasicBlock *ThenBB List[0];
BasicBlock *ElseBB List[1];
BasicBlock *MergeBB = List[2];
Builder.CreateCondBr(Condtn, ThenBB, ElseBB);

Builder.SetInsertPoint(ThenBB);

Value *ThenvVal = Builder.CreateAdd(Argl, Builder.getInt32(1),
"thenaddtmp");

Builder.CreateBr(MergeBB);

Builder.SetInsertPoint(ElseBB);

Value *ElseVal = Builder.CreateAdd(Argl, Builder.getInt32(2),
"elseaddtmp");

Builder.CreateBr(MergeBB);

unsigned PhiBBSize = List.size() - 1;

Builder.SetInsertPoint(MergeBB);

PHINode *Phi = Builder.CreatePHI(Type::getInt32Ty(getGlobalContext()),
PhiBBSize, "iftmp");

Phi->addIncoming(ThenVal, ThenBB);

Phi->addIncoming(ElseVal, ElseBB);

return Phi;

}

Overall code:

#include "llvm/IR/IRBuilder.h"
#include "1llvm/IR/LLVMContext.h"
#include "1llvm/IR/Module.h"
#include "1llvm/IR/Verifier.h"
#include <vector>

using namespace llvm;

static LLVMContext &Context = getGlobalContext();

static Module *ModuleOb = new Module("my compiler", Context);
static std::vector<std::string> FunArgs;

typedef SmallVector<BasicBlock *, 16> BBList;

typedef SmallVector<vValue *, 16> VallList;

Function *createFunc(IRBuilder<> &Builder, std::string Name) {

std::vector<Type *> Integers(FunArgs.size(), Type::getInt32Ty(Context));

FunctionType *funcType =

1lvm: :FunctionType: :get(Builder.getInt32Ty(), Integers, false);
Function *fooFunc = l1llvm::Function::Create(

funcType, llvm::Function::ExternalLinkage, Name, ModuleOb);
return fooFunc;

}
void setFuncArgs(Function *fooFunc, std::vector<std::string> FunArgs) {

unsigned Idx = 0;
Function::arg_iterator AI, AE;
for (AI = fooFunc->arg_begin(), AE = fooFunc->arg_end(); AI != AE;
++AI, ++Idx)
AI->setName(FunArgs[Idx]);
}

BasicBlock *createBB(Function *fooFunc, std::string Name) {
return BasicBlock::Create(Context, Name, fooFunc);
}

Globalvariable *createGlob(IRBuilder<> &Builder, std::string Name) {
ModuleOb->getOrInsertGlobal(Name, Builder.getInt32Ty());
Globalvariable *gvar = ModuleOb->getNamedGlobal(Name);
gvar->setLinkage(GlobalVvalue: :CommonLinkage);
gvar->setAlignment(4);
return gvar;

}

Value *createArith(IRBuilder<> &Builder, Value *L, Value *R) {
return Builder.CreateMul(L, R, "multmp");

}

Value *createIfElse(IRBuilder<> &Builder, BBList List, VallList VL) {
Value *Condtn = VL[O];
Value *Argl = VL[1];
BasicBlock *ThenBB List[0];
BasicBlock *ElseBB List[1];
BasicBlock *MergeBB = List[2];
Builder.CreateCondBr (Condtn, ThenBB, ElseBB);

Builder.SetInsertPoint(ThenBB);

Value *Thenval = Builder.CreateAdd(Argl, Builder.getInt32(1),
"thenaddtmp");

Builder.CreateBr(MergeBB);

Builder.SetInsertPoint(ElseBB);

Value *ElseVal = Builder.CreateAdd(Argl, Builder.getInt32(2),
"elseaddtmp");

Builder.CreateBr(MergeBB);

unsigned PhiBBSize = List.size() - 1;

Builder.SetInsertPoint(MergeBB);

PHINode *Phi = Builder.CreatePHI(Type::getInt32Ty(getGlobalContext()),
PhiBBSize, "iftmp");

PhiBBSize, "iftmp");

Phi->addIncoming(ThenvVal, ThenBB);

Phi->addIncoming(ElseVal, ElseBB);

return Phi;

}

int main(int argc, char *argv[]) {
FunArgs.push_back("a");
FunArgs.push_back("b");
static IRBuilder<> Builder(Context);
Globalvariable *gvar = createGlob(Builder, "x");
Function *fooFunc = createFunc(Builder, "foo");
setFuncArgs(fooFunc, FunArgs);
BasicBlock *entry = createBB(fooFunc, "entry");
Builder.SetInsertPoint(entry);
Value *Argl = fooFunc->arg_begin();
Value *constant = Builder.getInt32(16);
Value *val = createArith(Builder, Argl, constant);

Value *val2 = Builder.getInt32(100);
Value *Compare = Builder.CreateICmpULT(val, val2,

||cmptmpu) ;

Value *Condtn = Builder.CreateICmpNE(Compare, Builder.getInt32(0),

"ifcond");

VallList VL;
VL.push_back(Condtn);
VL.push_back(Arg1l);

BasicBlock *ThenBB = createBB(fooFunc, "then");
BasicBlock *ElseBB createBB(fooFunc, "else");
BasicBlock *MergeBB = createBB(fooFunc, "ifcont");
BBList List;

List.push_back(ThenBB);

List.push_back(ElseBB);

List.push_back(MergeBB);

Value *v = createIfElse(Builder, List, VL);

Builder.CreateRet(v);
verifyFunction(*fooFunc);
ModuleOb->dump();

return 0;

}
After compiling, the output looks like the following:

; ModuleID = 'my compiler'
@x = common global i32, align 4

define 132 @foo(i32 %a, 132 %b) {

entry:
%multmp = mul 132 %a, 16
%cmptmp = icmp ult i32 %multmp, 100
%ifcond = icmp ne i1 %cmptmp, 132 O

br i1 %ifcond, label %then, label %else

then: ; preds = %entry
%thenaddtmp = add i32 %a, 1
br label %ifcont

else: ; preds = %entry

%elseaddtmp = add 132 %a, 2
br label %ifcont

ifcont: ; preds %else, %then
%iftmp = phi i32 [%thenaddtmp, %then], [%elseaddtmp, %else]
ret 132 %iftmp

}

Emitting LLVM IR for loop

Similar to the if-else statement, loops can also be emitted using LLVM API’s, with slight
modification of the code. For example, we want to have LLVM IR for the following
Loops:

for(i=1; i< b; i++) {body}

The loop has induction variable i, which has some initial value that updates after each
iteration. The induction variable is updated after each iteration by a step value that is 1 in
the preceding example. Then there is a loop ending condition. In the preceding example,
‘i=1° is the initial value, ‘i<b‘ is the end condition of the loop, and ‘i++° is the step value
by which the induction variable ‘i‘ is incremented after every iteration of the loop.

Before writing a function to create a loop, some Value and BasicBlock need to be pushed
into a list, as follows:

Function::arg_iterator AI = fooFunc->arg_begin();
Value *Argl = AI++;
Value *Arg2 = AI;
Value *constant = Builder.getInt32(16);
Value *val = createArith(Builder, Argl, constant);
VallList VL;
VL.push_back(Argl);

BBList List;

BasicBlock *LoopBB = createBB(fooFunc, "loop");
BasicBlock *AfterBB = createBB(fooFunc, "afterloop");
List.push_back(LoopBB);

List.push_back(AfterBB);

Value *StartVal = Builder.getInt32(1);

Let’s create a function for the emitting loop:

PHINode *createLoop(IRBuilder<> &Builder, BBList List, VallList VL,
Value *Startval, Value *Endval) {
BasicBlock *PreheaderBB = Builder.GetInsertBlock();
Value *val = VL[O];
BasicBlock *LoopBB = List[0];
Builder.CreateBr (LoopBB);
Builder.SetInsertPoint(LoopBB);
PHINode *Indvar = Builder.CreatePHI(Type::getInt32Ty(Context), 2, "i");
Indvar->addIncoming(StartVal, PreheaderBB);
Builder.CreateAdd(val, Builder.getInt32(5), "addtmp");
Value *StepVal = Builder.getInt32(1);
Value *NextVval Builder.CreateAdd(Indvar, Stepval, "nextval");
Value *EndCond Builder.CreateICmpULT(Indvar, Endval, "endcond");
EndCond = Builder.CreateICmpNE(EndCond, Builder.getInt32(©), "loopcond");
BasicBlock *LoopEndBB = Builder.GetInsertBlock();
BasicBlock *AfterBB = List[1];
Builder.CreateCondBr (EndCond, LoopBB, AfterBB);
Builder.SetInsertPoint(AfterBB);
Indvar->addIncoming(NextVal, LoopEndBB);

return IndVar;

}

Consider the following lines of code:

Indvar->addIncoming(StartVal, PreheaderBB);..
IndVar->addIncoming(NextVal, LoopEndBB);

Indvar is a PHI node, which has two incoming values from two blocks—startval from the
Preheader block (i=1), and Nextval from the LoopEnd block.

The overall code is as follows:

#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/LLVMContext.h"
#include "1llvm/IR/Module.h"
#include "llvm/IR/Verifier.h"
#include <vector>

using namespace 1llvm;

typedef SmallVector<BasicBlock *, 16> BBList;
typedef SmallVector<vValue *, 16> Vallist;

static LLVMContext &Context = getGlobalContext();
static Module *ModuleOb = new Module("my compiler", Context);
static std::vector<std::string> FunArgs;

Function *createFunc(IRBuilder<> &Builder, std::string Name) {
std: :vector<Type *> Integers(FunArgs.size(), Type::getInt32Ty(Context));
FunctionType *funcType =
1lvm: :FunctionType: :get(Builder.getInt32Ty(), Integers, false);
Function *fooFunc = llvm::Function::Create(
funcType, 1llvm::Function::ExternallLinkage, Name, ModuleOb);
return fooFunc;

}

void setFuncArgs(Function *fooFunc, std::vector<std::string> FunArgs) {

unsigned Idx = 0;
Function::arg_iterator AI, AE;
for (AI = fooFunc->arg_begin(), AE = fooFunc->arg_end(); AI != AE;
++AI, ++Idx)
AI->setName(FunArgs[Idx]);

}

BasicBlock *createBB(Function *fooFunc, std::string Name) {
return BasicBlock::Create(Context, Name, fooFunc);
}

Globalvariable *createGlob(IRBuilder<> &Builder, std::string Name) {
ModuleOb->getOrInsertGlobal(Name, Builder.getInt32Ty());
Globalvariable *gvar = ModuleOb->getNamedGlobal(Name);
gvar->setLinkage(Globalvalue: :CommonLinkage);
gvar->setAlignment(4);
return gvar;

Value *createArith(IRBuilder<> &Builder, Value *L, Value *R) {
return Builder.CreateMul(L, R, "multmp");
}

Value *createLoop(IRBuilder<> &Builder, BBList List, VallList VL,
Value *StartvVal, Value *Endval) {
BasicBlock *PreheaderBB = Builder.GetInsertBlock();
Value *val = VL[O];
BasicBlock *LoopBB = List[0];
Builder.CreateBr (LoopBB);
Builder.SetInsertPoint(LoopBB);
PHINode *IndvVar = Builder.CreatePHI(Type::getInt32Ty(Context), 2, "i");
Indvar->addIncoming(Startval, PreheaderBB);
Value *Add = Builder.CreateAdd(val, Builder.getInt32(5), "addtmp");
Value *StepVal = Builder.getInt32(1);
Value *NextVal = Builder.CreateAdd(Indvar, StepVval, "nextval");
Value *EndCond Builder.CreateICmpULT(Indvar, EndvVal, "endcond");
EndCond = Builder.CreateICmpNE(EndCond, Builder.getInt32(0), "loopcond");
BasicBlock *LoopEndBB = Builder.GetInsertBlock();
BasicBlock *AfterBB = List[1];
Builder.CreateCondBr (EndCond, LoopBB, AfterBB);
Builder.SetInsertPoint (AfterBB);
IndVar->addIncoming(NextVal, LoopEndBB);
return Add;

}

int main(int argc, char *argv[]) {
FunArgs.push_back("a");
FunArgs.push_back("b");
static IRBuilder<> Builder(Context);
Globalvariable *gvar = createGlob(Builder, "x");
Function *fooFunc = createFunc(Builder, "foo");
setFuncArgs(fooFunc, FunArgs);
BasicBlock *entry = createBB(fooFunc, "entry");
Builder.SetInsertPoint(entry);
Function::arg_iterator AI = fooFunc->arg_begin();
Value *Argl = AI++;
Value *Arg2 = AI;
Value *constant = Builder.getInt32(16);
Value *val = createArith(Builder, Argl, constant);
VallList VL;
VL.push_back(Arg1l);

BBList List;

BasicBlock *LoopBB = createBB(fooFunc, "loop");
BasicBlock *AfterBB = createBB(fooFunc, "afterloop");
List.push_back(LoopBB);

List.push_back(AfterBB);

Value *Startval = Builder.getInt32(1);
Value *Res = createLoop(Builder, List, VL, StartvVal, Arg2);

Builder.CreateRet(Res);
verifyFunction(*fooFunc);
ModuleOb->dump();

return 0;

}

After compiling the program, we get the following output:
; ModuleID = 'my compiler'

@x = common global i32, align 4

define 132 @foo(i32 %a, 132 %b) {

entry:

%multmp = mul 132 %a, 16
br label %loop

loop: ; preds
%1 = phi i32 [1, %entry], [%nextval, %loop]
%addtmp = add 132 %a, 5
%nextval add i32 %i, 1
%endcond icmp ult i32 %i, %b
%loopcond = icmp ne il %endcond, i32 O
br i1 %loopcond, label %loop, label %afterloop

%loop, %entry

afterloop: ; preds
ret 132 %addtmp

%loop

}

Summary

In this chapter, you learned how to create simple LLVM IR using rich libraries provided
by LLVM. Remember that LLVM IR is an intermediate representation. The high-level
programming languages are converted to LLVM IR using the custom parser, which breaks
down the code into atomic pieces such as variables, functions, function return type,
function arguments, if-else conditions, loops, pointers, array, and so on. These atomic
elements can be stored into custom data structures and then those data structures can be
used to emit LLVM IR, as demonstrated in this chapter.

In the parser phase, syntactic analysis can be done, while lexical analysis and type
checking can be done in an intermediate stage after parsing and before emitting IR.

In practical usage, one would hardly find the IR being emitted in a hard-coded way as
demonstrated in this chapter. Instead, a language is parsed and represented in an Abstract
Syntax Tree. The tree is then used to emit LLVM IR with the help of the LLVM library, as
shown earlier. The LLVM community has provided an excellent tutorial for writing a
parser and emitting LLVM IR. You can visit http://llvm.org/docs/tutorial/ for the same.

In the next chapter, we will see how to emit some complex data structures such as array,
pointers. Also, we will go through some examples from Clang, the frontend for C/C++,
and understand how semantic Analysis is done.

http://llvm.org/docs/tutorial/

Chapter 3. Advanced LLVM IR

LLVM provides a powerful intermediate representation for efficient compiler
transformations and analysis, while providing a natural means to debug and visualize the
transformations. The IR is so designed that it can be easily mapped to high level
languages. LLVM IR provides typed information, which can be used for various
optimizations.

In the last chapter, you learned how to create some simple LLVM instructions within a
function and module. Starting from simple examples such as emitting binary operations,
we constructed functions in a module and also created some complex programming
paradigms such as if-else and loops. LLVM provides a rich set of instructions and
intrinsics to emit a complex IR.

In this chapter, we will go through some more examples of LLVM IR which involve
memory operations. Some advanced topics such as aggregate data types and operations on
them will also be covered. The topics covered in this chapter are as follows:

Getting the address of an element
Reading from the memory
Writing into a memory location
Inserting a scalar into a vector
Extracting a scalar from a vector

Memory access operations

Memory is an important component of almost all computing systems. Memory stores data,
which needs to be read to perform operations on the computing system. Results of the
operations are stored back in the memory.

The first step is to get the location of the desired element from the memory and store the
address in which that particular element can be found. You will now learn how to calculate
the address and perform load-store operations.

Getting the address of an element

In LLVM, the getelementptr instruction is used to get the address of an element in an
aggregate data structure. It only calculates the address and does not access the memory.

The first argument of the getelementptr instruction is a type used as the basis for
calculating the address. The second argument is pointer or vector of pointers which act as
base of the address - which in our array case will be a. The next arguments are the indices
of the element to be accessed.

The Language reference (http://llvm.org/docs/LangRef.html#getelementptr-instruction)

mentions important notes on getelementptr instruction as follows:

The first index always indexes the pointer value given as the first argument, the
second index indexes a value of the type pointed to (not necessarily the value directly
pointed to, since the first index can be non-zero), etc. The first type indexed into must
be a pointer value, subsequent types can be arrays, vectors, and structs. Note that
subsequent types being indexed into can never be pointers, since that would require
loading the pointer before continuing calculation.

This essentially implies two important things:

1. Every pointer has an index, and the first index is always an array index. If it’s a
pointer to a structure, you have to use index 0 to mean (the first such structure), then
the index of the element.

2. The first type parameter helps GEP identify the sizes of the base structure and its
elements, thus easily calculating the address. The resulting type (%a1) is not
necessarily the same.

More elaborated explanation is provided at http://llvin.org/docs/GetElementPtr.html

Let’s assume that we have a pointer to a vector of two 32 bit integers <2 x i132>* %a and
we want to access second integer from the vector. The address will be calculated as

%al = getelementptr 132, <2 x 1i32>* %a, 132 1
To emit this instruction, LLVM API can be used as follows:

First create an array type which will be passed as argument to the function.

Function *createFunc(IRBuilder<> &Builder, std::string Name) {
Type *u32Ty = Type::getInt32Ty(Context);
Type *vecTy = VectorType::get(u32Ty, 2);
Type *ptrTy = vecTy->getPointerTo(0);
FunctionType *funcType =
FunctionType: :get(Builder.getInt32Ty(), ptrTy, false);
Function *fooFunc =
Function: :Create(funcType, Function::ExternallLinkage, Name,
ModuleOb);
return fooFunc;

http://llvm.org/docs/LangRef.html#getelementptr-instruction
http://llvm.org/docs/GetElementPtr.html

}

Value *getGEP(IRBuilder<> &Builder, Value *Base, Value *0Offset) {
return Builder.CreateGEP(Builder.getInt32Ty(), Base, Offset, "al");
}

The whole code looks like:

#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/LLVMContext.h"
#include "1llvm/IR/Module.h"
#include "llvm/IR/Verifier.h"
#include <vector>

using namespace llvm;

static LLVMContext &Context = getGlobalContext();
static Module *ModuleOb = new Module("my compiler", Context);
static std::vector<std::string> FunArgs;

Function *createFunc(IRBuilder<> &Builder, std::string Name) {
Type *u32Ty = Type::getInt32Ty(Context);
Type *vecTy = VectorType::get(u32Ty, 2);
Type *ptrTy = vecTy->getPointerTo(0);
FunctionType *funcType =
FunctionType::get(Builder.getInt32Ty(), ptrTy, false);
Function *fooFunc =
Function: :Create(funcType, Function::ExternallLinkage, Name,
ModuleOb);
return fooFunc;

}

void setFuncArgs(Function *fooFunc, std::vector<std::string> FunArgs) {
unsigned Idx = 0;
Function::arg_iterator AI, AE;
for (AI = fooFunc->arg_begin(), AE = fooFunc->arg_end(); AI != AE;
++AI, ++Idx)
AI->setName(FunArgs[Idx]);

}

BasicBlock *createBB(Function *fooFunc, std::string Name) {
return BasicBlock::Create(Context, Name, fooFunc);
}

Value *getGEP(IRBuilder<> &Builder, Value *Base, Value *Offset) {
return Builder.CreateGEP(Builder.getInt32Ty(), Base, Offset, "al");
b

int main(int argc, char *argv[]) {
FunArgs.push_back("a");
static IRBuilder<> Builder(Context);
Function *fooFunc = createFunc(Builder, "foo");
setFuncArgs(fooFunc, FunArgs);
Value *Base = fooFunc->arg_begin();
BasicBlock *entry = createBB(fooFunc, "entry");
Builder.SetInsertPoint(entry);
Value *gep = getGEP(Builder, Base, Builder.getInt32(1));

verifyFunction(*fooFunc);
ModuleOb->dump();
return 0;

}
Compile the code:

$ clang++ toy.cpp "llvm-config --cxxflags --ldflags --system-libs --1libs
core” -fno-rtti -o toy
$./toy

Output:
; ModuleID = 'my compiler'

define 132 @foo(<2 x 132>* %a) {

entry:
%al = getelementptr i32, <2 x i32>* %a, 132 1
ret i32 0

}

Reading from the memory

Now, since we have the address, we are ready to read the data from that address and assign
the read value to a variable.

In LLVM the load instruction is used to read from a memory location. This simple
instruction or combination of similar instructions may then be mapped to some of the
sophisticated memory read instructions in low-level assembly.

A load instruction takes an argument, which is the memory address from which the data
should be read. We obtained the address in the previous section by the getelementptr
instruction in a1.

The load instruction looks like the following:
%val = load 132, i32* al
This means that the 1oad will take the data pointed by a1 and save in %val.

To emit this we can use the API provided by LLVM in a function, as shown in the
following code:

Value *getLoad(IRBuilder<> &Builder, Value *Address) {
return Builder.CreateLoad(Address, "load");

}

Let’s also return the loaded value:

builder.CreateRet(val);

The whole code is as follows:

#include "1llvm/IR/IRBuilder.h"
#include "1llvm/IR/LLVMContext.h"
#include "1llvm/IR/Module.h"
#include "1llvm/IR/Verifier.h"
#include <vector>

using namespace llvm;

static LLVMContext &Context = getGlobalContext();
static Module *ModuleOb = new Module("my compiler", Context);
static std::vector<std::string> FunArgs;

Function *createFunc(IRBuilder<> &Builder, std::string Name) {
Type *u32Ty = Type::getInt32Ty(Context);
Type *vecTy = VectorType::get(u32Ty, 2);
Type *ptrTy = vecTy->getPointerTo(0);
FunctionType *funcType =
FunctionType: :get(Builder.getInt32Ty(), ptrTy, false);
Function *fooFunc =
Function: :Create(funcType, Function::ExternallLinkage, Name,
ModuleOb);
return fooFunc;

}

void setFuncArgs(Function *fooFunc, std::vector<std::string> FunArgs) {
unsigned Idx = 0;
Function::arg_iterator AI, AE;
for (AI = fooFunc->arg_begin(), AE = fooFunc->arg_end(); AI != AE;
++AI, ++Idx)
AI->setName(FunArgs[Idx]);

}

BasicBlock *createBB(Function *fooFunc, std::string Name) {
return BasicBlock::Create(Context, Name, fooFunc);

}

Value *getGEP(IRBuilder<> &Builder, Value *Base, Value *0Offset) {
return Builder.CreateGEP(Builder.getInt32Ty(), Base, Offset, "al");

}

Value *getLoad(IRBuilder<> &Builder, Value *Address) {
return Builder.CreateLoad(Address, "load");

}

int main(int argc, char *argv[]) {
FunArgs.push_back("a");
static IRBuilder<> Builder(Context);
Function *fooFunc = createFunc(Builder, "foo");
setFuncArgs(fooFunc, FunArgs);
Value *Base = fooFunc->arg_begin();
BasicBlock *entry = createBB(fooFunc, "entry");
Builder.SetInsertPoint(entry);
Value *gep = getGEP(Builder, Base, Builder.getInt32(1));
Value *load = getLoad(Builder, gep);
Builder.CreateRet(load);
verifyFunction(*fooFunc);
ModuleOb->dump();
return 0O;

}

Compile the following code:

$ clang++ toy.cpp "llvm-config --cxxflags --ldflags --system-libs --1libs
core” -fno-rtti -o toy
$./toy

The following is the output:
; ModuleID = 'my compiler'

define 132 @foo(<2 x 132>* %a) {

entry:
%al = getelementptr 132, <2 x 132>* %a, 132 1
%load = load 132, i32* %al
ret 132 %load

}

Writing into a memory location

LLVM uses the store instruction to write into a memory location. There are two
arguments to the store instruction: a value to store and an address at which to store it. The
store instruction has no return value. Let’s say that we want to write a data to the second
element of the vector of two integers. The store instruction looks like store i32 3,

i32* %al. To emit the store instruction, we can use the following API provided by
LLVM:

void getStore(IRBuilder<> &Builder, Value *Address, Value *V) {
Builder.CreateStore(V, Address);
}

For example, we will multiply the second element of the <2 x i32> vector by 16 and store
it back at the same location.

Consider the following code:

#include "llvm/IR/IRBuilder.h"
#include "1llvm/IR/LLVMContext.h"
#include "1llvm/IR/Module.h"
#include "llvm/IR/Verifier.h"
#include <vector>

using namespace llvm;

static LLVMContext &Context = getGlobalContext();
static Module *ModuleOb = new Module("my compiler", Context);
static std::vector<std::string> FunArgs;

Function *createFunc(IRBuilder<> &Builder, std::string Name) {
Type *u32Ty = Type::getInt32Ty(Context);
Type *vecTy = VectorType::get(u32Ty, 2);
Type *ptrTy = vecTy->getPointerTo(0);
FunctionType *funcType =
FunctionType: :get(Builder.getInt32Ty(), ptrTy, false);
Function *fooFunc =
Function: :Create(funcType, Function::ExternallLinkage, Name,
ModuleOb);
return fooFunc;
}

void setFuncArgs(Function *fooFunc, std::vector<std::string> FunArgs) {
unsigned Idx = 0;
Function::arg_iterator AI, AE;
for (AI = fooFunc->arg_begin(), AE = fooFunc->arg_end(); AI != AE;
++AI, ++Idx)
AI->setName(FunArgs[Idx]);

}

BasicBlock *createBB(Function *fooFunc, std::string Name) {
return BasicBlock::Create(Context, Name, fooFunc);
}

Value *createArith(IRBuilder<> &Builder, Value *L, Value *R) {

}

return Builder.CreateMul(L, R, "multmp");

Value *getGEP(IRBuilder<> &Builder, Value *Base, Value *0Offset) {
return Builder.CreateGEP(Builder.getInt32Ty(), Base, Offset, "al");

}

Value *getLoad(IRBuilder<> &Builder, Value *Address) {

}

return Builder.CreateLoad(Address, "load");

void getStore(IRBuilder<> &Builder, Value *Address, Value *V) {

}

Builder.CreateStore(V, Address);

int main(int argc, char *argv[]) {

}

FunArgs.push_back("a");

static IRBuilder<> Builder(Context);

Function *fooFunc = createFunc(Builder, "foo");
setFuncArgs(fooFunc, FunArgs);

Value *Base = fooFunc->arg_begin();

BasicBlock *entry = createBB(fooFunc, "entry");
Builder.SetInsertPoint(entry);

Value *gep = getGEP(Builder, Base, Builder.getInt32(1));
Value *load = getlLoad(Builder, gep);

Value *constant = Builder.getInt32(16);

Value *val = createArith(Builder, load, constant);
getStore(Builder, gep, val);
Builder.CreateRet(val);

verifyFunction(*fooFunc);

ModuleOb->dump();

return 0O;

Compile the following code:

$ clang++ toy.cpp “llvm-config --cxxflags --ldflags --system-1libs
core” -fno-rtti -o toy
$./toy

The resulting output will be as follows:

4

ModuleID = 'my compiler'

define 132 @foo(<2 x 132>* %a) {
entry:

%al = getelementptr 132, <2 x 132>* %a, 132 1
%load = load 132, 1i32* %al

%multmp = mul 132 %load, 16

store 132 %multmp, 1i32* %al

ret 132 %multmp

--1libs

Inserting a scalar into a vector

LLVM also provides the API to emit an instruction, which inserts a scalar into a vector
type. Note that this vector is different from an array. A vector type is a simple derived type
that represents a vector of elements. Vector types are used when multiple primitive data
are operated in parallel using single instruction multiple data (SIMD). A vector type
requires a size (number of elements) and an underlying primitive data type. For example,
we have a vector Vec that has four integers of i32 type <4 x i32>. Now, we want to insert
the values 10, 20, 30, and 40 at 0, 1, 2, and 3 indexes of the vector.

The insertelement instruction takes three arguments. The first argument is a value of
vector type. The second operand is a scalar value whose type must equal the element type
of the first operand. The third operand is an index indicating the position at which to insert
the value. The resultant value is a vector of the same type.

The insertelement instruction looks like the following:

%vec® = insertelement <4 x double> Vec, %val®, %idx
This can be further understood by keeping the following in mind:

e Vec is of vector type < 4 x i32 >
e valo is the value to be inserted
e idx is the index at which the value is to be inserted in the vector

Consider the following code:

#include "1llvm/IR/IRBuilder.h"
#include "1llvm/IR/LLVMContext.h"
#include "1llvm/IR/Module.h"
#include "1llvm/IR/Verifier.h"
#include <vector>

using namespace llvm;

static LLVMContext &Context = getGlobalContext();
static Module *ModuleOb = new Module("my compiler", Context);
static std::vector<std::string> FunArgs;

Function *createFunc(IRBuilder<> &Builder, std::string Name) {
Type *u32Ty = Type::getInt32Ty(Context);
Type *vecTy = VectorType::get(u32Ty, 4);
FunctionType *funcType =
FunctionType: :get(Builder.getInt32Ty(), vecTy, false);
Function *fooFunc =
Function: :Create(funcType, Function::ExternallLinkage, Name,
ModuleOb);
return fooFunc;

}

void setFuncArgs(Function *fooFunc, std::vector<std::string> FunArgs) {
unsigned Idx = 0;
Function::arg_iterator AI, AE;
for (AI = fooFunc->arg_begin(), AE = fooFunc->arg_end(); AI != AE;

++AI, ++Idx)
AI->setName(FunArgs[Idx]);

}

BasicBlock *createBB(Function *fooFunc, std::string Name) {
return BasicBlock::Create(Context, Name, fooFunc);
}

Value *getInsertElement(IRBuilder<> &Builder, Value *Vec, Value *Val,
Value *Index) {
return Builder.CreateInsertElement(Vec, Val, Index);

}

int main(int argc, char *argv[]) {
FunArgs.push_back("a");
static IRBuilder<> Builder(Context);
Function *fooFunc = createFunc(Builder, "foo");
setFuncArgs(fooFunc, FunArgs);

BasicBlock *entry = createBB(fooFunc, "entry");
Builder.SetInsertPoint(entry);

Value *Vec = fooFunc->arg_begin();
for (unsigned int 1 = 0; 1 < 4; 1i++)
Value *V = getInsertElement(Builder, Vec, Builder.getInt32((i + 1)
* 10), Builder.getInt32(1));

Builder.CreateRet(Builder.getInt32(0));
verifyFunction(*fooFunc);
ModuleOb->dump();

return 0O;

}

Compile the following code:

$ clang++ toy.cpp "llvm-config --cxxflags --ldflags --system-libs --1libs
core” -fno-rtti -o toy
$./toy

The resulting output is as follows:
; ModuleID = 'my compiler'

define 132 @foo(<4 x 132> %a) {

entry
%0 = insertelement <4 x i32> %a, i32 10, i32 0
%1 = insertelement <4 x i32> %a, i32 20, i32 1
%2 = insertelement <4 x i32> %a, i32 30, i32 2
%3 = insertelement <4 x i32> %a, i32 40, i32 3
ret 132 0

}

The vector vVec will have <10, 20, 30, 40> values.

Extracting a scalar from a vector

An individual scalar element can be extracted from a vector. LLVM provides the
extractelement instruction for the same. The first operand of an extractelement
instruction is a value of vector type. The second operand is an index indicating the
position from which to extract the element.

The extractelement instruction looks like the following:

result = extractelement <4 x i32> %vec, 132 %idx
This can be further understood by keeping the following in mind:

e vec IS a vector
e idx is the index at which the data to be extracted lies
e result is of scalar type, which is 132 here

Let’s take an example where we want to add all the elements of a given vector and return
an integer.

Consider the following code:

#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Verifier.h"
#include <vector>

using namespace llvm;

static LLVMContext &Context = getGlobalContext();
static Module *ModuleOb = new Module("my compiler", Context);
static std::vector<std::string> FunArgs;

Function *createFunc(IRBuilder<> &Builder, std::string Name) {
Type *u32Ty = Type::getInt32Ty(Context);
Type *vecTy = VectorType::get(u32Ty, 4);
FunctionType *funcType =
FunctionType: :get(Builder.getInt32Ty(), vecTy, false);
Function *fooFunc =
Function: :Create(funcType, Function::ExternallLinkage, Name,
ModuleOb);
return fooFunc;
b

void setFuncArgs(Function *fooFunc, std::vector<std::string> FunArgs) {
unsigned Idx = 0;
Function::arg_iterator AI, AE;
for (AI = fooFunc->arg_begin(), AE = fooFunc->arg_end(); AI != AE;
++AI, ++Idx)
AI->setName(FunArgs[Idx]);

}

BasicBlock *createBB(Function *fooFunc, std::string Name) {
return BasicBlock::Create(Context, Name, fooFunc);

}

Value *createArith(IRBuilder<> &Builder, Value *L, Value *R) {

}

return Builder.CreateAdd(L, R, "add");

Value *getExtractElement(IRBuilder<> &Builder, Value *Vec, Value *Index)

}

return Builder.CreateExtractElement(Vec, Index);

int main(int argc, char *argv[]) {

}

FunArgs.push_back("a");

static IRBuilder<> Builder(Context);

Function *fooFunc = createFunc(Builder, "foo");
setFuncArgs(fooFunc, FunArgs);

BasicBlock *entry = createBB(fooFunc, "entry");
Builder.SetInsertPoint(entry);

Value *Vec = fooFunc->arg_begin();
SmallVector<Value *, 4> V;
for (unsigned int i = 0; 1 < 4; i++)
V[i] = getExtractElement(Builder, Vec, Builder.getInt32(1i));

Value *addl = createArith(Builder, V[0], V[1]);
Value *add2 = createArith(Builder, addil, V[2]);
Value *add = createArith(Builder, add2, V[3]);

Builder.CreateRet(add);
verifyFunction(*fooFunc);
ModuleOb->dump();

return 0O;

Compile the following code:

$ clang++ toy.cpp "llvm-config --cxxflags --ldflags --system-libs --1libs
core” -fno-rtti -o toy
$./toy

Output:

ModuleID = 'my compiler'

define 132 @foo(<4 x 132> %a) {
entry:

extractelement <4
extractelement <4
%2 extractelement <4
%3 extractelement <4
%add = add i32 %0, %1
%addl = add i32 %add, %2
%add2 = add i32 %addil, %3
ret i32 %add2

%0
%1

i32> %a, 132 ©
i32> %a, i32 1
i32> %a, i32 2
i32> %a, 132 3

X X X X

Summary

Memory operations form an important instruction for most of the target architecture. Some
of the architectures have sophisticated instructions to move data in and out of the memory.
Some even perform binary operations directly on the memory operands, while some of
them load data from memory into registers and then perform operations on them (CISC vs
RISC). Many load-store operations are also done by LLVM instrinsics. For examples,

please refer to http:/llvm.org/docs/L.angRef.html#masked-vector-load-and-store-
intrinsics.

LLVM IR provides a common playfield for all the architectures. It provides elementary
instructions for data operations on memory or on aggregate data types. The architectures,
while lowering LLVM IR, may combine IR instructions to emit their specific instructions.
In this chapter, we went through some advanced IR instructions and also looked into
examples of them. For a detailed study, refer to http://llvim.org/docs/L.angRef.html, which
provides the authoritative resource for LLVM IR instructions.

In the next chapter, you will study how LLVM IR can be optimized to reduce instructions
and emit a clean code.

http://llvm.org/docs/LangRef.html#masked-vector-load-and-store-intrinsics
http://llvm.org/docs/LangRef.html

Chapter 4. Basic IR Transformations

Until now, we have seen how the IR is independent of its target and how it can be used to
generate code for a specific backend. To generate efficient code for the backend, we
optimize the IR generated by the frontend by running a series of analysis and
transformation passes using the LLVM pass manager. We must note that most of the
optimizations that happen in a compiler take place on the IR, one of the reasons being that
the IR is retargetable and the same set of optimizations would be valid for a number of
targets. It reduces the effort of writing the same optimization for every target. There are
some target-specific optimizations too; they happen at the selection DAG level, which we
will see later. Another reason for IR being the target of optimization is that LLVM IR is in
SSA form, which means every variable is assigned only once and every new assignment to
a variable is a new variable itself. One very visible benefit of this representation is that we
don’t have to do reaching definition analysis where some variable is assigned a value of
another variable. SSA representation also helps in a number of optimizations such as
constant propagation, dead code elimination, and so on. Going ahead, we will see some of
the important optimizations in LLVM, what is the role of LLVM Pass Infrastructure, and
how we can use the opt tool to perform different optimizations.

In this chapter, we will cover following topics:

The opt tool

Pass and Pass Manager

Using other Pass info in own pass
IR simplification examples

IR combination examples

Opt Tool

Opt is the LLVM Optimizer and analyzer tool that is run on LLVM IR to optimize the IR
or produce an analysis about it. We saw in the first chapter a very basic introduction to the
opt tool, and how to use it to run analysis and transformation passes. In this section, we
will see what else the opt tool does. We must note that opt is a developer tool and all the
optimizations that it provides can be invoked from the frontend as well.

With the opt tool, we can specify the level of optimization that we need, which means we
can specify the optimization levels from 00, 01, 02, to 03(00 being the least optimized
code and 03 being the most optimized code). Apart from these, there is also an
optimization level 0s or 0z, which deals with space optimization. The syntax to invoke
one of these optimizations is:

$ opt -Ox -S input.ll

Here, x represents the optimization level, which can have a value from 0 to 3 or s or z.
These optimization levels are similar to what Clang frontend specifies. -00 represents no
optimization whereas -01 means only few optimizations are enabled. -02 is a moderate
level of optimization and -03 is the highest level of optimization, which is similar to -02
but it allows optimization that takes longer to perform or may generate larger code (the O3
level does not guarantee that the code will be the most optimized and efficient, it just says
that the compiler will try more to optimize the code and in the process may break things
also). -0s means optimization for size, basically not running optimizations which increase
code size (for example, it removes s1p-vectorizer optimization) and perform
optimizations that reduce code size (for example, instruction combining optimization).

We can direct the opt tool to run a specific pass that we require. These passes can be one
of the already defined passes listed at http://llvin.org/docs/Passes.html or one of the passes
we have written ourselves. The passes listed in the above link are also run in the
optimization levels of -01, -02, and -03. To view which pass is being run at a certain
optimization level, use the -debug-pass=Structure command-line option along with the
opt tool.

Let’s take an example to demonstrate the difference between the 01 and 02 level of
optimization. The 03 level generally has one or two more passes from 02. So, let’s take an
example and see how much the 02 level of optimization optimizes the code. Write the test
code in the test.11 file:

define internal i32 @test(i132* %X, 132* %Y)

{
%A = load 132, 132* %X
%B = load 132, i32* %Y
%C = add 132 %A, %B
ret 132 %C
¥
define internal i32 @caller(i32* %B)
{

%A = alloca 132

http://llvm.org/docs/Passes.html

store 132 1, i32* %A
%C = call i32 @test(i32* %A, i32* %B)
ret i32 %C

3
define 132 @callercaller()
{
%B = alloca 132
store 132 2, i32* %B
%X = call i32 @caller(i32* %B)
ret 132 %X
3

In this test code, the callercaller function calls the caller function, which in turn calls
the test function, which performs an addition of two numbers and returns the value to its
caller, which in turn returns the value to the callercaller function.

Now, run the 01 and 02 levels of optimization, as shown:

$ opt -01 -S test.1l1l > 1.11
$ opt -02 -S test.1ll > 2.11

The following screenshot shows the difference in the optimized code for the 01 and 02
levels:

L v | Browse... 21l v || Browse...
; Function ATtrs: nounwind readonly =» €| Function AtTrs: nounwind readnone
define internal fastcc 132 @test(132% nocapture readonly %X, i32* nocapture define 132 @callercaller() #8 {
%A = load 132, 132= %X, align 4 €= ret 132 3
%8 = load 132, 132* %Y, align 4 1
%C = add 132 5B, %A
ret i32 % & attributes #8 = { nounwind readnone }

}

: Function Attrs: nounwind readonly
define interpal fastcc 132 @caller(i32* nocapture readonly %B) #8 {
%A = alloca i32, align 4
store 132 1, i32* WA, align 4
%C = call fastcc i32 @test{i32* nonnull %A, i32* %B)
ret 132 %€

; Function Attrs: nounwind readonly
define i32 @callercaller() #8 {
%8 = alloca i32, align 4 = i
store i32 2, 132+ %B, align 4
%X = call Tastcc 132 @caller(i32* nonnull %8)
ret 132 %X

attributes #9 = { nounwind readonly } -+

As we can see, the code in 02 has optimized the calls to the function and the Add
operations as well and returns the result directly from the callercaller function. This is
obtained due to the fact that 02 optimization runs the passes always-inline which inlines
all the function calls and treats the code as one big function. Then, in also runs the
globaldce pass, which eliminates unreachable internals from the code. After this, it runs
constmerge which merges duplicate global constants into a single constant. It also
performs a global value numbering pass that eliminates partially or fully redundant
instructions and eliminates redundant load instructions.

Pass and Pass Manager

LLVM’s Pass infrastructure is one of the many important features of the LLVM system.
There are a number of analysis and optimization passes that can be run using this
infrastructure. The starting point for LLVM passes is the Pass class, which is a superclass
of all the passes. We need to inherit from some predefined subclasses taking into account
what our pass is going to implement.

e ModulePass: This is the most general superclass. By inheriting this class we allow
the entire module to be analyzed at once. The functions within the module may not
be referred to in a particular order. To use it, write a subclass that inherits from the
ModulePass subclass and overloads the runonModule function.

Note

Before going ahead with the discussion of other Pass classes, let’s look into the three
virtual methods that the Pass classes override:

o dolnitialization: This is meant to do initialization stuff that does not depend on
the current function being processed.

o runOn{Passtype}: This is the method where we should implement our subclass
for the functionality of the pass. This will be runonFunction for FunctionPass,
runonLoop for LoopPass, and so on.

o doFinalization: This is called when runon{Passtype} has finished doing the
job for every function in the program.

¢ FunctionPass: These passes execute on each function present in the module,
independent from other functions in the module. There is no defined order in which
the functions will be processed. They are not allowed to modify functions other than
the one being processed, and any addition or deletion of functions from the current
module is also not allowed. To implement FunctionPass we might need to overload
the three virtual functions mentioned earlier by implementing in the runonFunction
method.

e BasicBlockPass: These passes work on basic blocks one at a time, independently of
other basic blocks present in the program. They are not allowed to add or delete any
new basic block or change the CFG. They are also not allowed to do things that
FunctionPass is not allowed to. To implement, they can override the
doInitialization and doFinalization methods of FunctionPass, or overload their
own virtual methods for the two methods mentioned earlier and the
runonBasicBlock method.

e LoopPass: These passes work on each loop in the function, independent of all other
loops within the function. Loops are processed in such a way that the outermost loop
is executed the last. To implement LoopPass we need to overload the
doInitialization, doFinalization, and runOnLoop methods.

Now, let’s see how to get started with writing a custom pass. Let’s write a pass that will
print the names of all the functions.

Before getting started with writing the implementation of the pass, we need to make
changes in a few places in the code so that the pass is recognized and can be run.

We need to create a directory under the LLVM tree. Let’s make a directory,
lib/Transforms/FnNamePrint. In this directory, we need to create a Makefile with the
following contents, which will allow our pass to be compiled:

LEVEL = ../../..
LIBRARYNAME = FnNamePrint
LOADABLE_MODULE = 1

include $(LEVEL)/Makefile.common

This specifies that all . cpp files should be compiled and linked into a shared object that
will be available in the 1ib folder of the build-folder (build-
folder/lib/FnNamePrint.so).

Now, let’s get started with writing the actual pass implementation. We need to create the
source file for the pass in 1ib/Transforms/FnNamePrint: let’s name it FnNamePrint.cpp.
The first step now is to choose the correct subclass. In this case, as we are trying to print
names of each function, the FunctionPass class will serve our purpose by processing one
function at a time. Also, we are only printing the name of function and not modifying
anything within it, so we are choosing FunctionPass for simplicity. We could use
ModulePass as well because it is an Immutable Pass.

Now, let’s write the source code for the pass implementation, which looks like this:

#include "llvm/Pass.h"
#include "1llvm/IR/Function.h"
#include "llvm/Support/raw_ostream.h"

using namespace llvm;

namespace {
struct FnNamePrint: public FunctionPass {
static char 1ID;
FnNamePrint () : FunctionPass(ID) {}
bool runOnFunction(Function &F) override {
errs() << "Function " << F.getName() << '\n';
return false;
3
3
}

char FnNamePrint::ID = 0;static RegisterPass< FnNamePrint >
X("funcnameprint", "Function Name Print", false, false);

In the preceding code we include the necessary headers first and use an 11vm namespace:

#include "llvm/Pass.h"
#include "1llvm/IR/Function.h"
#include "llvm/Support/raw_ostream.h"

using namespace llvm;

We declare our pass as a structure, FnNamePrint, which is a subclass of FunctionPass. In
runonFunction we implement the logic to print the function name. The bool value
returned in the end signifies whether we have made any modification within the function.
A True value is returned if some modifications was made, otherwise, false is returned. In
our case, we are not making any modifications, so we return false.

struct FnNamePrint: public FunctionPass {
static char ID;
FnNamePrint () : FunctionPass(ID) {}
bool runOnFunction(Function &F) override {
errs() << "Function " << F.getName() << '\n';
return false;

}
iy
}

Then, we declare the 1D for the pass, which is used to identify the pass:

char FnNamePrint::ID = 0O;

Finally, we need to register the passes with the Pass Manager. The first argument is the
Pass name used by the opt tool to identify this pass. The second argument is the actual
Pass name. The third and fourth arguments specify whether the pass modified the cfg and
whether it is an analysis pass.

static RegisterPass< FnNamePrint > X('"funcnameprint", "Function Name Print",
false, false);

Note

The implementation of the pass is done. Now, before we use it, we need to build LLVM
using the make command, which will build the shared object in the 1ib folder within the
build (build-folder/1lib/FnNamePrint.so).

Now, we can run the pass over a test case using the opt tool in the following way:

$ opt -load path-to-1llvm/build/lib/FnNamePrint.so -funcnameprint test.ll

The 1oad command line option specifies the path from where to pick the shared object of
the pass and -funcnameprint is the option to opt tool to tell it to run the pass we have
written. The Pass will print the names of all the function present in the testcase. For the
example in the first section it will print out:

Function test
Function caller
Function callercaller

So, we got started with writing a Pass. Now, we will see the significance of the
PassManager class in LLVM.

The PassManager class schedules the passes to be run efficiently. The PassManager is used
by all LLVM tools that run passes for the execution of these passes. It is the responsibility

of the PassManager to make sure the interaction between the passes is correctly done. As
it tries to execute the passes in an optimized way, it must have information regarding how
the passes interact with each other and what the different dependencies between the passes
are.

A pass itself can specify the dependency on other passes, that is, which passes need to be
run before the execution of the current pass. Also, it can specify the passes that will be
invalidated by the execution of the current pass. The PassManager gets the analysis results
before a pass is executed. We will later see how a pass can specify such dependencies.

The main work of the PassManager is to avoid the calculation of analysis results time and
again. This is done by keeping track of which analyses are available, which are
invalidated, and which analyses are required. The PassManager tracks the lifetimes of the
analysis results and frees the memory holding the analysis results when not required,
allowing for optimal memory use.

The PassManager pipelines the passes together to get better memory and cache results,
improving the cache behavior of the compiler. When a series of consecutive
FunctionPass are given, it will execute all the FunctionPass on the first function, then all
the FunctionPass on the second function, and so on. This improves cache behavior as it is
only dealing with the single function part of the LLVM representation and not the entire
program.

The PassManager also specifies the -debug-pass option with which we can see how one
pass interacts with other passes. We can see what all passes are run using the -debug-
pass=Argument option. We can use the -debug-pass=Structure option to see how the
passes had run. It will also give us the names of the passes that ran. Let’s take the example
of the test code in the first section of this chapter:

$ opt -02 -S test.ll -debug-pass=Structure
$ opt -load /build-folder/lib/LLVMFnNamePrint.so test.ll -funcnameprint -
debug-pass=Structure

Pass Arguments: -targetlibinfo -tti -funcnameprint -verify
Target Library Information
Target Transform Information
ModulePass Manager
FunctionPass Manager

Function Name Print

Module Verifier
Function test
Function caller
Function callercaller

In the output, the Pass Arguments gives us the passes that are run and the following list is
the structure used to run each pass. The Passes just after ModulePass Manager will show
the passes run per module (here, it is empty). The passes in hierarchy of FunctionPass
Manager show that these passes were run per function (Function Name Print and Module
Verifier), which is the expected result.

The PassManger also provides some other useful flags, some of which are the following:

time-passes: This gives time information about the pass along with the other passes
that are lined up.

stats: This prints statistics about each pass.

instcount: This collects the count of all instructions and reports them. -stats must
also be Passes to the opt tool so that the results of instcount are visible.

Using other Pass info in current Pass

For the Pass Manager to work optimally it needs to know the dependencies between the
Passes. Each of the passes can itself declare its dependencies: the analysis passes that need
to be executed before this pass is executed and the passes that will get invalidated after the
current pass is run. To specify these dependencies, a pass needs to implement the
getAnalysisUsage method.

virtual void getAnalysisUsage(AnalysisUsage &Info) const;

Using this method the current pass can specify the required and invalidated sets by filling
in the details in the AnalysisUsage object. To fill in the information the Pass needs to call
any of the following methods:

AnalysisUsage::addRequired<> method

This method arranges for the execution of a Pass prior to the current Pass. One example of
this is: for memory copy optimization it needs the results of an alias analysis:

void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<AliasAnalysis>();

By adding the pass required to run, it is made sure that Alias Analysis Pass is run

before the MemCpyOpt Pass. Also, this makes sure that if the Alias Analysis has been
invalidated by some other Pass, it will be run before the MemCpyopt Pass is run.

AnalysisUsage:addRequiredTransitive<> method

When an analysis chains to other analyses for results, this method should be used instead
of the addrRequired method. That is, when we need to preserve the order in which the
analysis passes are run we use this method. For example:

void DependenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {

AU.addRequiredTransitive<AliasAnalysis>();
AU.addRequiredTransitive<ScalarEvolution>();
AU.addRequiredTransitive<LoopInfo>();

}

Here, DependenceAnalysis chains to AliasAnalysis, ScalarEvolution and LoopInfo
Passes for the results.

AnalysisUsage::addPreserved<> method

By using this method a Pass can specify which analyses of other Passes it will not
invalidate on running: that is, it will preserve the information already present, if any. This
means that the subsequent passes that require the analysis would not need to run this
again.

For example, in the case of the MemCpyOpt Pass seen earlier, it required the AliasAnalysis
results and it also preserved them. Also:

void getAnalysisUsage(AnalysisUsage &AU) const override {

AU.addPreserved<AliasAnalysis>();

,

To get a detailed understanding of how everything is linked and works together, you can
pick up any of the transformation passes and go through the source code and you will
know how they are getting information from other passes and how they are using it.

Instruction simplification example

In this section, we will see how we fold instructions into simpler forms in LLVM. Here,
the creation of new instructions will not take place. Instruction simplification does
constant folding:

sub i32 2, 1 -> 1

That is, it simplifies the sub instruction to a constant value 1.
It can handle non-constant operands as well:

or 132 %x, 0 -> %X

It returns a value of variable %x

and i32 %x %x -> %X

In this case, it returns an already existing value.

The implementations for the methods that simplify instructions are located in
lib/Analysis/InstructionSimplify.cpp.

Some of the important methods of dealing with the simplification of instructions are:

¢ SimplifyBinOp method: This is used to simplify binary operations such as addition,
subtraction, and multiplication, and so on. It has the function signature as follows:

static Value *SimplifyBinOp(unsigned Opcode, Value *LHS,
Value *RHS, const Query &Q, unsigned MaxRecurse)

Here, by opcode, we mean the operator instruction that we are trying to simplify. LHS and

RHS are the operands on either side of the operator. MaxRecurse is the recursion level we
specify after which the routine must stop trying simplification of the instruction.

In this method, we have a switch case on the Opcode:

switch (Opcode) {

Using this opcode, the method decides which function it needs to call for simplification.
Some of the methods are as follows:

e SimplifyAddInst: This method tries to fold the result of the Add operator when the
operands are known. Some of the folding is as follows:

X + undef -> undef
X+ 0 ->X
X+ (Y -X)->Yor (Y - X)+X ->Y

The code for the last simplification in the function static value
*SimplifyAddInst(Value *0p0®, Value *0Opl, bool isNSW, bool isNUW, const

Query &Q, unsigned MaxRecurse) looks something like this:

if (match(Opl1, m_Sub(m_Value(Y), m_Specific(0p0))) ||
match(0Op®, m_Sub(m_Vvalue(Y), m_Specific(0pl))))
return Y,

Here, the first condition matches the (Y-X) value in the expression as Operandi:
m_Value(Y) denotes value of Y and m_Specific(0p0) denotes X. As soon as it is matched
it folds the expression to a constant value Y and returns it. The case is similar for the
second part of our condition:

e SimplifySublInst: This method tries to fold the result of subtract operator when the
operators are known. Some examples for the same are as follows:

X - undef -> undef
X -X->0

X -0 ->X

X - (X -Y) ->Y

The matching of instructions and folding is done similar to as shown in SimplifyAddInst:

e SimplifyAndInst: Similar to the two preceding methods, it tries to fold the result for
the logical operator And. Some examples of this are:

A&~A = ~A&A = 0
The code for this, in the method looks like:

if (match(0p®, m_Not(m_Specific(Opl))) ||
match(Opl, m_Not(m_Specific(0p0))))
return Constant::getNullValue(OpO->getType());

Here, it tries to match A and ~A and returns a Null value, 0, when it matches the condition.

So, we have seen a bit of instruction simplification. Now, what do we do if we can replace
a set of instructions with a more effective set of instructions?

Instruction Combining

Instruction combining is a LLVM Pass and compiler technique in which we replace a
sequence of instructions with instructions that are more effective and give the same result
on execution in a smaller number of machine cycles. Instruction combining does not alter
the CFG of the program and is mainly used for algebraic simplification. The major
difference between instruction combining and instruction simplification is that in
instruction simplification we cannot generate new instructions, which is possible in
instruction combining. This pass is run by specifying the -instcombine argument to the
opt tool and is implemented in the 1ib/transforms/instcombine folder. The
instcombine Pass combines

%Y = add 132 %X, 1

add i32 %Y, 1

%Z = add 132 %X, 2

It has removed one redundant add instruction and hence combined the two add
instructions to one.

The LLVM page states that this pass guarantees that the following canonicalizations are
performed on the program:

e Constant operand of a binary operator is moved to RHS.

e Bitwise operators with constant operands are grouped together with shifts being
performed first then ‘or’ operations, ‘and’ operations and then ‘xor operations’

If possible, comparison operators are converted from <,>,<=,>=to == or !=.

All cmp instructions operating on Boolean values are replaced with logical operations.
Add X, X is represented by X*2 | that is X<<1

Multipliers with a power-of-two constant argument are transformed into shifts.

This pass starts from bool InstCombiner::runOnFunction(Function &F) located in the
InstructionCombining.cpp file. There are different files under the
lib/Transform/InstCombine folder to combine instructions related to different
instructions. The methods, before trying to combine instructions, try to simplify them.
Some of these methods for simplification of the instcombine module are:

e SimplifyAssociativeOrCommutative function: It performs simplification for
operators that are associative or commutative. For commutative operators, it orders
the operands from right to left in the order of increasing complexity. For associative
operations of the form “(X op Y) op z% it converts it to “x op (Y op z)” if (Y op
Z) can be simplified.

e tryFactorization function: This method tries to simplify binary operations by
factoring out common terms using commutative and distributive property of the
operator. For example, (A*B)+(A*C) is simplified to A* (B+C).

Now, let’s look at instruction combining. As described earlier, various functionalities are
implemented in different files. Let’s take an example testcode and see where to add code

so that instruction combining happens for our testcode.

Let’s write the testcode in test.11 for the pattern (A | (B A C)) A ((A A C) A B),
which can be reduced to (A & (B A C)):

define i32 @testfunc(i32 %x, 132 %y, 132 %z) {
%xorl = xor 132 %y, %z

%0r = or 132 %x, %xorl

%xXor2 = xor 132 %X, %z

%xor3 = xor 132 %xor2, %y

%res = xor 132 %or, %xor3

ret 132 %res

}
The code in LLVM for the handling of operators such as “And”, “Or”, and “Xor” lies in
the 1ib/Transforms/InstCombine/InstCombineAndorXor .cpp file.

In the InstCombineAndorXor .cpp file, in the InstCombiner: :visitXor(BinaryOperator
&I) function, go to the if condition If (0peI && Opi1I) and add the following snippet of
code:

If (match(0p®1, m_Or(m_Xor(m_Value(B), m_Value(C)), m_Value(A)))
&& match(0pl1I, m_Xor(m_Xor(m_Specific(A), m_Specific(C)), m_Specific(B))))
{

}

As it is quite clear, the code added is to match the pattern (A | (B A~ C)) A ((A A C) A
B) and return (A & (B A C)) when matched.

return BinaryOperator::CreateAnd(A, Builder->CreateXor(B,C));

To test the code, build LLVM and run the instcombine Pass with this test code and see the
output.

$ opt -instcombine -S test.ll

define i32 @testfunc(i32 %x, i32 %y, 132 %z) {
%1 = xor 132 %y, %z

%res = and i32 %1, %X

ret i32 %res

}

So the output shows that now only one xor and one and operation is required instead of
four xor and one or earlier.

To understand and add more transformations you can look into the source code in the
InstCombine folder.

Summary

So, in this chapter, we looked into how simple transformations can be applied to IR. We
looked into the opt tool, LLVM Pass infrastructure, the Passmanager and how to use
information of one Pass in another Pass. We ended the chapter with examples of
instruction simplification and instruction combining. In the next chapter, we will see some
more advanced optimizations like Loop Optimization, Scalar Evolution, and others, where
we will operate at a block of code rather than individual instructions.

Chapter 5. Advanced IR Block
Transformations

In the previous chapter, we have gone through some of the optimizations, which were
mainly at instruction level. In this chapter, we will look at optimizations on block level
where we will be optimizing a block of code to a simpler form, which makes the code
more effective. We will start by looking at how loops are represented in LLVM, use the
concept of dominance and CFG to optimize loops. We will use Loop Simplification
(Loopsimplify)and Loop Invariant Code Motion optimizations for loop processing. We
will then see how a scalar value changes during program execution and how the result of
this Scalar Evolution Optimization can be used in other optimizations. Then we will
look into how LLVM represents its in build functions called as LLVM intrinsics. Finally,
we will look into how LLVM deals with concepts of parallelism by understanding its
approach towards vectorization.

In this chapter, we will look into the following topics:

Loop processing
Scalar evolution
LLVM intrinsics

[]
[]
[]
e Vectorization

Loop processing

Before getting started with loop processing and optimization, we must have a little heads
up about the concepts of CFG and dominance information. A CFG is the control flow
graph of the program that gives a look into how the program may be executed through the
various basic blocks. By dominance information, we get to know about the relation
between the various basic blocks in the CFG.

In a CFG, we say a node d dominates a node n if every path (from the input towards
output) that passes through n must also pass through d. This is denoted by d -> n. The
graph G = (v, E), where V is the set of basic blocks and E is the dominance relation
defined on v, is called dominator tree.

Let’s take an example to show the CFG of a program and the corresponding dominator
tree.

Put example code here:

void fun() {
int iter, a, b;

for (iter = 0; iter < 10; iter++) {
a=2>5;
if (iter == a)
b =2;
else
b =5;
}
}

The CFG for the preceding code looks like the following:

1:
intiter, a, b
2
if(i 1= 10)
TRUE | FALSE
3
a=>5
if (iter == a) 7
return
TRUE | FALSE
4
b=2
6
iter++

From what you have learned about dominance and dominator trees, the dominator tree for
the preceding CFG looks something like the following:

1:
int iter, a, b
2:
ifii 1= 10
TRUE | FALSE
3: 7.
P retum
if {iter == a)
TRUE FALSE
4: 2 R
b=2 b=5 fter++

The first figure shows the CFG of the preceding code and the next figure shows the
dominator tree for the same CFG. We have numbered each of the CFG components and
we can see that 2 dominates 3 in the CFG, and 2 also dominates 4, 5, and 6. 3 dominates 4,
5, and 6 and is the immediate dominator of these. There is no dominance relation between
4 and 5. 6 is not dominated by 5 because there is another path available through 4 and for
the same reasons, 4 does not dominate 6.

All the loop optimizations and transformation in LLVM are derived from the LoopPass
class implemented in the LoopPass. cpp file located in 1ib/Analysis. The LPPassManager
class is responsible for the handling of all LoopPasses.

The most important class to get started with loop processing is the LoopInfo Class, which
is used to identify the natural loops in the code and to know the depth of various nodes in
the CFG. Natural loops are the cyclic structures in a CFG. To define a natural loop in a
CFG, we must know what a backedge is: it is an edge in the CFG where the source
dominates the target. A natural loop can be defined by a backedge a->d that defines a
subgraph of the CFG, where d is the header node and it contains all other basic blocks that
can reach a without having to reach d.

We can see in the preceding diagram that the backedge 6->2 forms a natural loop
consisting of the nodes 2, 3, 4, 5, and 6.

The next important step is loop simplification that transforms the loop into a canonical

form, which includes the insertion of a preheader to the loop, which in turn ensures that
there is a single entry edge to the loop header from outside the loop. It also inserts loop
exit blocks, which ensure that all exit blocks from the loop have predecessors only from
within the loop. These insertion of pre-header and exit blocks help in later loop
optimizations, such as Loop Independent Code Motion.

Loop Simplification also ensures that the loop will have only one backedge, that is if the
loop header is having more than two predecessors, (from the pre header block and
multiple latches to the loop) we adjust only this loop latch. One way of doing this is by
inserting a new block which is the target of all the backedges and make this new block
jump to loop header. Let’s take a look at how a loop looks after Loop Simplify Pass. We
will be able to see that a preheader node is inserted, new exit blocks are created, and there
is only one backedge.

l l

HEADER PRE-HEADER
S BACKEDGE
v A
HEADER
LATEH * LATOH
SINGLE BACKEDGE

HEADER.

LATCH

LS LATCH

-~

LOOP SIMPLIFY —>

F

Y h 4 /
Eear EXIT

Y ¥
» BT BEaT

Now, after getting the required information from LoopInfo and simplifying the loop to a
canonical form, we will look into some of the loop optimizations.

One of the main loop optimizations is Loop Invariant Code Motion (LICM)
optimization. This pass tries to remove as much code from the body of the loop as
possible. The condition for removal of the code is that this piece of code is invariant inside
the loop, that is the output of this part of code not dependent on loop execution and it will
remain same in every iteration of the loop. This is done by moving this piece of code
either in the preheader block or moving the code to exit blocks. This pass is implemented
in the 1ib/TransformsScalar/LICM.cpp file. If we look into the code of the loop, we see
it requires LoopInfo and LoopSimplify passes to be run before it. Also, it needs the
AliasAnalysis information. Alias analysis is needed to move loop invariant loads and

calls out of the loop. If there is no load and call inside the loop that aliases anything
stored, we can move these out of the loop. This also helps in scalar promotion of memory.

Let’s look at an example to see how LICM is getting done.

Let’s write the testcase in a file 1icm.11:

$ cat licm.1ll
define void @func(i32 %i) {

Entry:
br label %Loop
Loop:
%j = phi i32 [0, %Entry], [%Vval, %Loop]
%loopinvar = mul i32 %i, 17
%Val = add i32 %j, %loopinvar
%cond = icmp eq i32 %Val, 0
br i1 %cond, label %Exit, label %Loop
Exit:
ret void
}

This testcase has a loop denoted by Loop block in the test code with the loop condition
being br i1 %cond, label %Exit, label %Loop (Latch part of the loop). We can see the
%j value, which is being used as the induction variable is derived after using the phi
instruction. Basically, it tells to choose the value 0 if the control is coming from the Entry
block and %val if the control is coming from Loop block. In this, the invariant code can be
seen as %loopinvar = mul i32 %i, 17, as %loopinvar value is independent of the
iteration of loop and depends on the function argument only. So when we run the LICM
pass, we expect this value to be hoisted out of the loop, thus preventing its computation in
every iteration of the loop.

Let’s run the 1icm pass and see the output:

$ opt -licm licm.1l1l -o licm.bc

$ 1llvm-dis licm.bc -0 licm_opt.11l
$ cat licm_opt.1ll

; ModuleID = 'licm.bc'

define void @func(i32 %i) {
Entry:
%loopinvar = mul i32 %i, 17
br label %Loop

Loop:
; preds = %Loop, %Entry
%j = phi i32 [0, %Entry], [%Val, %Loop]
%Val = add i32 %j, %loopinvar
%cond = icmp eq 132 %Val, ©
br i1 %cond, label %Exit, label %Loop

Exit:
; preds = %Loop
ret void

}

As we can see in the output, the calculation %loopinvar = mul i32 %i, 17 is hoisted out
of the loop, which is the expected output.

We have many other loop optimizations such as Loop Rotation, Loop Interchange,
Loop Unswitch, and so on. The source codes for these can be looked under the LLVM
folder 1ib/Transforms/Scalar to get more understanding about these optimizations. In
the next section, we will see the concept of scalar evolution.

Scalar evolution

By scalar evolution, we mean how the value of a scalar changes in a program with the
execution of code. We look at a particular scalar value and see how it is getting derived,
what all other elements it is dependent on, whether this is known at compile time or not,
and what all operations are being performed. We need to look into a block of code rather
than looking into individual instructions. A scalar value is build up from two elements, a
variable and an operation of constant step. The variable element that builds up this scalar
value is unknown at compile time and its value can be known at run time only. The other
element is the constant part. These elements themselves may be recursively broken into
other elements such as a constant, an unknown value or an arithmetic operation.

The main idea here is to look at complete scalar value containing the unknown part at
compile time and see how this value will evolve during execution and try to use this for
optimization. One example is removing a redundant value for which the scalar evolution is
similar to some other value in the same program.

In LLVM, we can use scalar evolution to analyze code that contains common integer
arithmetic operations.

In LLVM ScalarEvolution class is implemented in include/11vm/Analysis, which is a
LLVM pass and can be used analyze scalar expressions in a loop. It is able to recognize
general induction variables (a variable in loop whose value is a function of loop iteration
number) and represent them using object of SCEV class, which is used to represent
analyzed expression in a program. Using this analysis trip count and other important
analysis can be obtained. This scalar evolution analysis is mainly used in induction
variable substitution and strength reduction of loops.

Let’s take an example now and run the scalar evolution pass on it and see what output it
generates.

Write a testcase scalevl.1l with a loop and some scalar values within the loop.

$ cat scalevl.1ll
define void @fun() {

entry:
br label %header
header:
%i = phi i32 [1, %entry], [%i.next, %body]
%cond = icmp eq 132 %i, 10
br i1 %cond, label %exit, label %body
body:
%a = mul 132 %i, 5
%b = or i32 %a, 1
%1i.next = add 132 %i, 1
br label %header
exit:
ret void
}

In this test case, we have a loop consisting of header and body blocks with %a and %b

being the scalars in loop body of interest. Let’s run the scalar evolution pass on this and
see the output:

$ opt -analyze -scalar-evolution scalevl.ll
Printing analysis 'Scalar Evolution Analysis' for function 'fun':
Classifying expressions for: @fun
%1 = phi i32 [1, %entry], [%i.next, %body]
--> {1,+,1}<%header> U: [1,11) S: [1,11) Exits: 10
%a = mul i32 %i, 5
--> {5,+,5}<%header> U: [5,51) S: [5,51) Exits: 50
% = or 132 %a, 1
--> %b U: [1,0) S: full-set Exits: 51
%i.next = add 132 %i, 1
--> {2,+,1}<%header> U: [2,12) S: [2,12) Exits: 11
Determining loop execution counts for: @fun
Loop %header: backedge-taken count is 9
Loop %header: max backedge-taken count is 9

As we can see, the output of scalar evolution pass shows the range of values for a
particular variable (U stands for unsigned range and s for signed range, here both are
same) and the exit value, the value in that variable when the loop runs its last iteration. For
example, the value %i has the range as [1,11), that is the starting iteration value is 1 and
when the value of %i becomes 11 the condition %cond = icmp eq 132 %i, 10 becomes
false and the loop breaks. So, the the value of %i when it exited the loop was 10, which is
denoted by Exits: 10 in the output.

The value in the form of {x, +, y} representation, such as {2, +, 1}, represents add
recurrence, that is the expressions changing value during loop execution where x
represents the base value at Oth iteration and y represents the value added to it on each
subsequent iteration.

The output also shows the number of times the loop has iterated after the first run. Here, it
shows the value 9 for backedge-taken, that is the loop has run 10 times in total. The max
backedge-taken value is the least value which can never be less than the backedge-taken
value, which here is 9.

This is the output for this example, you can try some other test cases and see what this
pass outputs.

L.LLVM intrinsics

An intrinsic function is a function built in to the compiler. The compiler knows how to
best implement the functionality in the most optimized way for these functions and
replaces with a set of machine instruction for a particular backend. Often, the code for the
function is inserted inline thus avoiding the overhead of function call (In many cases, we
do call the library function. For example, for the functions listed in

http://llvm.org/docs/L.angRef.html#standard-c-library-intrinsics we make a call to 1ibc).
These are also called built-in functions for other compilers.

In LLVM these intrinsics are introduced during code optimization at IR level (Intrinsics
written in program code can be emitted through frontend directly). These function names
will start with a prefix “11vm.“, which is a reserved word in LLVM. These functions are
always external and a user cannot specify the body for these functions in his/her code. In
our code, we can only call these intrinsic functions.

In this section, we will not go much deep into details. We will take an example and see
how LLVM optimizes certain part of code with its own intrinsic functions.

Let’s write a simple code:

$ cat intrinsic.cpp
int func()

{
int a[5];
for (int 1 = 0; i != 5; ++i)
a[i] = o;
return a[0];
}

Now use Clang to generate the IR file. Using the command given below, we will get the
intrinsic.11 file that contains the unoptimized IR without any intrinsic function.

$ clang -emit-1llvm -S intrinsic.cpp

Now, use the opt tool to optimize the IR with O1 level of optimization.

$ opt -01 intrinsic.ll -S -0 -

; ModuleID = 'intrinsic.ll'
target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128"
target triple = "x86_64-unknown-linux-gnu"

; Function Attrs: nounwind readnone uwtable
define i32 @_zZ4funcv() #06 {
%a = alloca [5 x i32], align 16
%a2 = bitcast [5 x i1i32]* %a to i8*
call void @llvm.memset.p0i8.i64(i8* %a2, i8 0, i64 20, i32 16, il false)
%1 = getelementptr inbounds [5 x i32], [5 x i32]* %a, i64 0, i64 0
%2 = load 132, i32* %1, align 16
ret i32 %2

http://llvm.org/docs/LangRef.html#standard-c-library-intrinsics

; Function Attrs: nounwind argmemonly

declare void @llvm.memset.p0i8.i64(i8* nocapture, i8, i64, 132, il) #1

The important optimization to be noted here is the call to LLVM intrinsic function
11lvm.memset.p0i8. 164 to fill the array with value 0. The intrinsic functions may be used
to implement vectorization and parallelization in the code, leading to better code
generation. It might call the most optimized version of the memset call from the 1ibc
library and may choose to completely omit this function if there is no usage of this.

The first argument in the call specifies the array “a“, that is the destination array where the
value needs to be filled. The second argument specifies the value to be filled. The third
argument to the call is specification about number of bytes to be filled. The fourth
argument specifies the alignment of destination value. The last argument is to determine
whether this is a volatile operation or not.

There is a list of such intrinsic functions in LLVM, a list of which can be found at
http://llvm.org/docs/L.angRef.html#intrinsic-functions.

http://llvm.org/docs/LangRef.html#intrinsic-functions

Vectorization

Vectorization is an important optimization for compilers where we can vectorize code to
execute an instruction on multiple datasets in one go. Advance target architecture typically
have vector registers set and vector instructions—where broad range of data type
(typically 128/246 bit) can be loaded into the vector registers and operations can be
performed on those register set, performing two, four, and sometimes eight operations at
the same time, with the cost of one scalar operation.

There are two types of vectorization in LLVM—Superword-Level Parallelism (SLP)
and loop vectorization. Loop vectorization deals with vectorization opportunities in a loop,
while SLP vectorization deals with vectorizing straight-line code in a basic block.

A vector instruction performs Single-instruction multiple-data (SIMD) operations; the
same operation on multiple data lanes (in parallel).

< = —— —
e
S ——

e — — —

) | _ _ |

Let’s look at how SLP Vectorization is implemented in LLVM infrastructure.

As the code itself attributes, the implementation of SLP Vectorization in LLVM is inspired
by the work described in the paper Loop-Aware SLP in GCC by Ira Rosen, Dorit Nuzman,
and Ayal Zaks. LLVM SLP Vectorization Pass implements the Bottom Up SLP vectorizer.
It detects consecutive stores that can be put together into vector-stores. Next, it attempts to
stores that can be put together into vector-stores. Next, it attempts to construct
vectorizable tree using the use-def chains. If a profitable tree was found, the SLP
vectorizer performs vectorization on the tree.

There are three stages to SLP Vectorization:

e Identify the pattern and determine if it is a valid Vectorization pattern
e Determine if it is profitable to vectorize the code
e If step 1 and 2 are true, then vectorize the code

Let’s look at an example:

Consider addition of 4 consecutive elements of two arrays into third array.

int a[4], b[4], c[4];

void addsub() {

a[0] = b[e] + c[0];
a[1] = b[1] + c[1];
a[2] = b[2] + c[2];
a[3] = b[3] + c[3];
}

The IR for the preceding kind of expression will look like this:

; ModuleID = 'addsub.c'

@a = global [4 x i132] zeroinitializer, align 4
@b = global [4 x i32] zeroinitializer, align 4
@c = global [4 x i32] zeroinitializer, align 4

; Function Attrs: nounwind
define void @addsub() {
entry:

%0 = load 132, i32* getelementptr inbounds ([4 x 1i32], [4 x 132]* @b, 132
0, 132 0)

%1 = load 132, 1i132* getelementptr inbounds ([4 x 132], [4 x 132]* @c, 132
0, 132 0)

%add = add nsw 132 %1, %0

store 132 %add, 132* getelementptr inbounds ([4 x 132], [4 x 132]* @a,
i32 0, i32 0)

%2 = load 132, 1i132* getelementptr inbounds ([4 x 132], [4 x 132]* @b, 132
0, 132 1)

%3 = load 132, 132* getelementptr inbounds ([4 x 132], [4 x 132]* @c, 132
0, 132 1)

%addl = add nsw i32 %3, %2

store 132 %addl, 132* getelementptr inbounds ([4 x 132], [4 x 132]* @a,
i32 0, 132 1)

%4 = load 132, i132* getelementptr inbounds ([4 x 132], [4 x 132]* @b, 132
0, 132 2)

%5 = load 132, i132* getelementptr inbounds ([4 x 132], [4 x 132]* @c, 132
0, 132 2)

%add2 = add nsw 132 %5, %4

store 132 %add2, 132* getelementptr inbounds ([4 x 132], [4 x 132]* @a,
i32 0, 132 2)

%6 = load 132, 132* getelementptr inbounds ([4 x 132], [4 x 132]* @b, 132
0, 132 3)

%7 = load 132, 132* getelementptr inbounds ([4 x 132], [4 x 132]* @c, 132
0, i32 3)

%add3 = add nsw i32 %7, %6

store 132 %add3, 132* getelementptr inbounds ([4 x 132], [4 x 132]* @a,
i32 0, i32 3)

ret void
}

The expression tree for the preceding pattern can be visualized as a chain of stores and
loads:

@ (air) &)
NN O IIN¢
bio)) (clol) (brf) (cia) bey) () @B (c83)

For the preceding expression tree, the bottom-up SLP Vectorization first constructs a chain
that starts with a store instruction:

// Use the bottom up slp vectorizer to construct chains that start
// with store instructions.
BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC);

It then scans the tree already built in the preceding code for all the stores in the given basic
block:

// Scan the blocks in the function in post order.
for (auto BB : post_order(&F.getEntryBlock())) {
// Vectorize trees that end at stores.
if (unsigned count = collectStores(BB, R)) {
(void)count;
DEBUG(dbgs() << "SLP: Found " << count << " stores to
vectorize.\n");
Changed |= vectorizeStoreChains(R);
¥

// Vectorize trees that end at reductions.
Changed |= vectorizeChainsInBlock(BB, R);

}

The collectStores() function collects all the store references.

unsigned SLPVectorizer::collectStores(BasicBlock *BB, BoUpSLP &R) {

unsigned count = 0;
StoreRefs.clear();
const DatalLayout &DL = BB->getModule()->getDatalLayout();
for (Instruction &I : *BB) {

StoreInst *SI = dyn_cast<StoreInst>(&I);

if (!SI)

continue;

// Don't touch volatile stores.
if (!SI->isSimple())
continue;

// Check that the pointer points to scalars.
Type *Ty = SI->getValueOperand()->getType();
if (!isValidElementType(Ty))

continue;

// Find the base pointer.
Value *Ptr = GetUnderlyingObject(SI->getPointerOperand(), DL);

// Save the store locations.
StoreRefs[Ptr].push_back(SI);
count++;

}

return count;

3
The function SLPVectorizer: :vectorizeStoreChains() has three steps and function
calls to each three steps:

bool SLPVectorizer::vectorizeStoreChain(ArrayRef<Value *> Chain,
int CostThreshold, BoUpSLP &R,
unsigned VecRegSize) {

R.buildTree(Operands);
int Cost = R.getTreeCost();

DEBUG(dbgs() << "SLP: Found cost=" << Cost << " for VF=" << VF <<
Il\nll);
if (Cost < CostThreshold) {
DEBUG(dbgs() << "SLP: Decided to vectorize cost=" << Cost << "\n");
R.vectorizeTree();

The first step is to identify pattern. The function buildTree() subsequently builds up the
tree recursively as the preceding visualization.

void BoUpSLP::buildTree(ArrayRef<Value *> Roots,
ArrayRef<Value *> UserIgnorelLst) {

buildTree_rec(Roots, 0);

}

For our given example, it will identify that all the store operations have binary addition
operations as their operands:

void BoOUpSLP::buildTree_rec(ArrayRef<Vvalue *> VL, unsigned Depth) {

case Instruction::Add:
newTreeEntry(VL, true);
DEBUG(dbgs() << "SLP: added a vector of bin op.\n");

// Sort operands of the instructions so that each side is more
// likely to have the sam opcode

if (isa<BinaryOperator>(VLO) && VLO->isCommutative()) {
ValuelList Left, Right;
reorderInputsAccordingToOpcode(VL, Left, Right);
buildTree_rec(Left, Depth + 1);
buildTree_rec(Right, Depth + 1);
return;

When the binary operation ADD is encountered, it again recursively builds tree (calling the

same function) on LHS and RHS operands of the ADD operation, which in our case are
both Load:

case Instruction::Load: {

// Check that a vectorized load would load the same memory as a //
scalar load.

// For example we don't want vectorize loads that are smaller than 8
bit.

// Even though we have a packed struct {<i2, i2, i2, i2>} LLVM treats

// loading/storing it as an 18 struct. If we vectorize loads/stores
from

// such a struct we read/write packed bits disagreeing with the

// unvectorized version.

const DatalLayout &DL = F->getParent()->getDatalLayout();

Type *ScalarTy = VL[O]->getType();

if (DL.getTypeSizeInBits(ScalarTy) !=
DL.getTypeAllocSizeInBits(ScalarTy)) {
BS.cancelScheduling(VL);
newTreeEntry(VL, false);
DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n");
return;
3
// Check if the loads are consecutive or of we need to swizzle them.
for (unsigned i = 0, e = VL.size() - 1; 1 < e; ++i) {
LoadInst *L = cast<LoadInst>(VL[1]);
if (!L->1isSimple()) {
BS.cancelScheduling(VL);
newTreeEntry(VL, false);
DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n");
return;

}

if (!isConsecutiveAccess(VL[i], VL[i + 1], DL)) {
if (VL.size() == 2 && isConsecutiveAccess(VL[1], VL[O], DL)) {
++NumLoadsWantToChangeOrder;
3
BS.cancelScheduling(VL);
newTreeEntry(VL, false);
DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n");
return;

}
b

++NumLoadsWantToKeepOrder;

newTreeEntry(VL, true);
DEBUG(dbgs() << "SLP: added a vector of loads.\n");
return;

}

While building the tree, there are several checks that validate if the tree can be vectorized.
For example, in the preceding case, when loads are encountered across trees, it is checked
whether they are consecutive loads or not. In our expression tree, the loads across trees in
LHS—b[0], b[1], b[2], and b[3] are accessing consecutive memory location. Similarly,
loads across tress in RHS—c[0], c[1], c[2] and c[3] are accessing consecutive memory
location. If any of the checks fail for a given operation, the building of a tree is aborted
and code is not vectorized.

After the pattern is identified and the vector tree is built, the next step is to get the cost of
vectorizing the built tree. This effectively refers to the cost of the tree if it is vectorized
compared to the cost of tree in current scalar form. If the vector cost is less than the scalar
cost, it is beneficial to vectorize the tree:

int BOUpSLP::getTreeCost() {
int Cost = 0;
DEBUG(dbgs() << "SLP: Calculating cost for tree of size "
<< VectorizableTree.size() << ".\n");

// We only vectorize tiny trees if it is fully vectorizable.
if (VectorizableTree.size() < 3 && !'isFullyVectorizableTinyTree()) {
if (VectorizableTree.empty()) {
assert(!ExternalUses.size() && "We should not have any external
users");

3
return INT_MAX,

}

unsigned Bundlewidth = VectorizableTree[0].Scalars.size();

for (unsigned i = 0, e = VectorizableTree.size(); 1 !'= e; ++1) {
int C = getEntryCost(&VectorizableTree[i]);
DEBUG(dbgs() << "SLP: Adding cost " << C << " for bundle that starts
with " << *VectorizableTree[i].Scalars [0] << " . \n");
Cost += C;
¥

SmallSet<Value *, 16> ExtractCostCalculated;
int ExtractCost = 0;
for (UserList::iterator I = ExternalUses.begin(), E = ExternalUses.end();
I !=E; ++I) {
// We only add extract cost once for the same scalar.
if (!ExtractCostCalculated.insert(I->Scalar).second)
continue;

// Uses by ephemeral values are free (because the ephemeral value will
be

// removed prior to code generation, and so the extraction will be

// removed as well).

if (EphValues.count(I->User))

continue;

VectorType *VecTy = VectorType::get(I->Scalar->getType(), Bundlewidth);
ExtractCost +=
TTI->getVectorInstrCost(Instruction: :ExtractElement, VecTy, I-
>Lane);

}

Cost += getSpillCost();

DEBUG(dbgs() << "SLP: Total Cost " << Cost + ExtractCost << ".\n");
return Cost + ExtractCost;

}

An important interface to focus on here is the TargetTransformInfo (TTT), which
provides access to the codegen interfaces that are needed for IR-level transformations. In
our SLP Vectorization, TTTI is used to get the cost of the vector instruction of the built
vector tree:

int BOUpSLP::getEntryCost(TreeEntry *E) {

case Instruction::Store: {
// We know that we can merge the stores. Calculate the cost.
int ScalarStCost = VecTy->getNumElements() *
TTI->getMemoryOpCost(Instruction: :Store, ScalarTy,
1, 0);
int VecStCost = TTI->getMemoryOpCost(Instruction::Store, VecTy, 1, 0);
return VecStCost - ScalarStCost;

}

}
In the same function, the cost of vector add is also calculated:

case Instruction::Add: {
// Calculate the cost of this instruction.
int ScalarCost = 0;
int VecCost = 0;
if (Opcode == Instruction::FCmp || Opcode == Instruction::ICmp ||
Opcode == Instruction::Select) {
VectorType *MaskTy = VectorType::get(Builder.getIntiTy(), VL.size());
ScalarCost =
VecTy->getNumElements() *
TTI->getCmpSelInstrCost(Opcode, ScalarTy, Builder.getIntilTy());
VecCost = TTI->getCmpSelInstrCost(Opcode, VecTy, MaskTy);
} else {
// Certain instructions can be cheaper to vectorize if they have
// a constant second vector operand.
TargetTransformInfo::0perandvalueKind OplVK =
TargetTransformInfo::0K_AnyValue;
TargetTransformInfo::0perandvalueKind Op2VK =
TargetTransformInfo::0K_UniformConstantValue;
TargetTransformInfo::OperandvalueProperties OplVP =
TargetTransformInfo: :0P_None;

TargetTransformInfo: :0perandvValueProperties Op2VP =
TargetTransformInfo::0P_None;

// If all operands are exactly the same ConstantInt then set the
// operand kind to OK_UniformConstantValue.
// If instead not all operands are constants, then set the operand
kind
// to OK_AnyValue. If all operands are constants but not the
// same, then set the operand kind to OK_NonUniformConstantValue.
ConstantInt *CInt = nullptr;
for (unsigned i = 0; i < VL.size(); ++1i) {
const Instruction *I = cast<Instruction>(VL[i]);
if (!isa<ConstantInt>(I->getOperand(1))) {
Op2VK = TargetTransformInfo::0K_AnyValue;
break;
}
if (1 == 0) {
CInt = cast<ConstantInt>(I->getOperand(1));
continue;
}
if (0Op2VK == TargetTransformInfo::0K_UniformConstantValue &&
CInt != cast<ConstantInt>(I->getOperand(1)))
Op2VK = TargetTransformInfo::0K_NonUniformConstantValue;
}
// FIXME: Currently cost of model modification for division by
// power of 2 is handled only for X86. Add support for other
// targets.
if (0p2VK == TargetTransformInfo::0K_UniformConstantValue && CInt &&
CInt->getValue().isPower0f2())
Op2VP = TargetTransformInfo::0P_Power0f2;

ScalarCost = VecTy->getNumElements() *
TTI->getArithmeticInstrCost(Opcode, ScalarTy, Op1lVK,
Op2VK, Op1VP, Op2VP);
VecCost = TTI->getArithmeticInstrCost(Opcode, VecTy, Op1lVK, Op2VK,
OplVP, Op2VP);
¥

return VecCost - ScalarcCost;

}

In our example, the total cost of the whole expression tree comes out to be -12, which
indicates that it is profitable to vectorize the tree.

Finally, the tree is vectorized by the function call R.vectorizeTree() on the tree:

Value *BoUpSLP::vectorizeTree() {

vectorizeTree(&VectorizableTree[0]);

} -

Lets see all the steps the Vectorization process follows for our example. Note that this will
require a ‘Debug‘ build of the ‘opt* tool.

$ opt -S -basicaa -slp-vectorizer -mtriple=aarch64-unknown-linuxgnhu -
mcpu=cortex-a57 addsub.1l1l -debug

Features:
CPU:cortex-ab57

SLP: Analyzing blocks in addsub.

SLP: Found 4 stores to vectorize.

SLP: Analyzing a store chain of length 4.

SLP: Analyzing a store chain of length 4

SLP: Analyzing 4 stores at offset 0

SLP: bundle: store i32 %add, i32* getelementptr inbounds ([4 x 132], [4
x i32]* @a, i32 0, i32 0)

SLP: initialize schedule region to store i32 %add, i32* getelementptr
inbounds ([4 x i32], [4 x i32]* @a, 132 0, 132 0)

SLP: extend schedule region end to store i32 %addl, 1i32* getelementptr
inbounds ([4 x 132], [4 x i32]* @a, i32 0, 132 1)

SLP: extend schedule region end to store i32 %add2, i32* getelementptr
inbounds ([4 x 132], [4 x i32]* @a, i32 0, 132 2)

SLP: extend schedule region end to store 132 %add3, i32* getelementptr
inbounds ([4 x i32], [4 x i32]* @a, 132 0, 132 3)

SLP: try schedule bundle [store 132 %add, 1i32* getelementptr inbounds ([4
x i32], [4 x 132]* @a, 132 0, 132 0); store i32 %addl, 1i32* getelementptr
inbounds ([4 x 132], [4 x 132]* @a, 132 0, 132 1); store 132 %add2, i32*
getelementptr inbounds ([4 x 132], [4 x 132]* @a, 132 0, i32 2); store 132
%add3, i32* getelementptr inbounds ([4 x 132], [4 x 132]* @a, 132 0, i32
3)] in block entry

SLP: update deps of [store i32 %add, i32* getelementptr inbounds
([4 x 132], [4 x 132]* @a, 132 0, 132 0); store i32 %addil, i32*
getelementptr inbounds ([4 x 132], [4 x 132]* @a, 132 0, i32 1); store 132
%add2, i32* getelementptr inbounds ([4 x 132], [4 x 132]* @a, 132 0, i32
2); store 132 %add3, i32* getelementptr inbounds ([4 x 132], [4 x i132]*
@a, i32 0, i32 3)]

SLP: update deps of / store 132 %addl, 132* getelementptr inbounds
([4 x 1i32], [4 x i32]* @a, i32 0, i32 1)

SLP: update deps of / store 132 %add2, 132* getelementptr inbounds
([4 x 132], [4 x i32]* @a, i32 0, i32 2)

SLP: update deps of / store 132 %add3, 132* getelementptr inbounds
([4 x 1i32], [4 x i32]* @a, i32 0, i32 3)

SLP: gets ready on update: store 132 %add, 1i32* getelementptr

inbounds ([4 x 132], [4 x 132]* @a, 132 0, 1i32 0)

SLP: We are able to schedule this bundle.

SLP: added a vector of stores.

SLP: bundle: %add = add nsw 132 %1, %0

SLP: extend schedule region start to %add = add nsw 132 %1, %0

SLP: try schedule bundle [%add = add nsw 132 %1, %0; %addl = add nsw 132
%3, %2; %add2 = add nsw i32 %5, %4; %add3 = add nsw i32 %7, %6] in block

entry

SLP: update deps of [%add = add nsw i32 %1, %0; %addl = add nsw
i32 %3, %2; %add2 = add nsw 132 %5, %4; %add3 = add nsw 132 %7, %6]
SLP: update deps of / %addl = add nsw i32 %3, %2

SLP: update deps of / %add2 = add nsw i32 %5, %4

SLP: update deps of / %add3 = add nsw 132 %7, %6

SLP: schedule [store i32 %add, i32* getelementptr inbounds ([4 x 132],
[4 x 1i32]* @a, i32 0, i32 0); store 132 %addl, i32* getelementptr inbounds
([4 x i32], [4 x 132]* @a, 132 0, i32 1); store i32 %add2, i32*

getelementptr inbounds ([4 x i32], [4 x 132]* @a, 132 0, i32 2); store i32
%add3, i32* getelementptr inbounds ([4 x 132], [4 x 132]* @a, 132 0, 132
3)]

SLP: gets ready (def): [%add = add nsw i32 %1, %0; %addl = add nsw
i32 %3, %2; %add2 = add nsw 132 %5, %4; %add3 = add nsw 132 %7, %6]

SLP: We are able to schedule this bundle.

SLP: added a vector of bin op.

SLP: bundle: %1 = load i32, i32* getelementptr inbounds ([4 x 1i32], [4 X
i32]* @c, 132 0, i32 0)

SLP: extend schedule region start to %1 = load i32, i32* getelementptr
inbounds ([4 x 132], [4 x i32]* @c, 132 0, 132 0)

SLP: try schedule bundle [%1 = load i32, i32* getelementptr inbounds ([4
x i32], [4 x i32]* @c, i32 0, 132 0); %3 = load i32, i32* getelementptr
inbounds ([4 x 132], [4 x 1i32]* @c, 132 0, 132 1); %5 = load i32, i32*
getelementptr inbounds ([4 x i32], [4 x 132]* @c, 132 0, i32 2); %7 = load
i32, i32* getelementptr inbounds ([4 x i32], [4 x 1i32]* @c, 132 0, i32 3)]
in block entry

SLP: update deps of [%1 = load 132, i32* getelementptr inbounds ([4
x i32], [4 x i32]* @c, i32 0, i32 0); %3 = load i32, i32* getelementptr
inbounds ([4 x 132], [4 x i32]* @c, i32 0, 132 1); %5 = load i32, i32*
getelementptr inbounds ([4 x i32], [4 x 132]* @c, 132 0, i32 2); %7 = load
i32, i32* getelementptr inbounds ([4 x i32], [4 x 132]* @c, 132 0, i32 3)]
SLP: update deps of / %3 = load i32, i32* getelementptr inbounds
([4 x 132], [4 x 1i32]* @c, i32 0, i32 1)

SLP: update deps of / %5 = load i32, i32* getelementptr inbounds
([4 x 1i32], [4 x i32]* @c, i32 0, i32 2)

SLP: update deps of / %7 = load i32, i32* getelementptr inbounds
([4 x 1i32], [4 x i32]* @c, i32 0, i32 3)

SLP: schedule [%add = add nsw i32 %1, %0; %addl = add nsw 132 %3, %2;
%add2 = add nsw 132 %5, %4; %add3 = add nsw 132 %7, %6]

SLP: gets ready (def): [%1 = load i32, i32* getelementptr inbounds ([4
x i32], [4 x 132]* @c, 132 0, 132 0); %3 = load i32, i32* getelementptr
inbounds ([4 x 132], [4 x i32]* @c, 132 0, i32 1); %5 = load 132, i32*
getelementptr inbounds ([4 x 132], [4 x 132]* @c, 132 0, i32 2); %7 = load
i32, i32* getelementptr inbounds ([4 x i32], [4 x 132]* @c, 132 0, i32 3)]
SLP: We are able to schedule this bundle.

SLP: added a vector of loads.

SLP: bundle: %0 = load 132, i32* getelementptr inbounds ([4 x 132], [4 X
i32]* @b, i32 0, i32 0)

SLP: extend schedule region start to %0 = load 132, 132* getelementptr
inbounds ([4 x 132], [4 x i132]* @b, 132 0, i32 0)

SLP: try schedule bundle [%0 = load i32, i32* getelementptr inbounds ([4
x i32], [4 x 132]* @b, 132 0, 132 0); %2 = load i32, i32* getelementptr
inbounds ([4 x 132], [4 x i32]* @b, i32 0, i32 1); %4 = load i32, i32*
getelementptr inbounds ([4 x 132], [4 x 132]* @b, 132 0, i32 2); %6 = load
i32, i32* getelementptr inbounds ([4 x 1i32], [4 x 132]* @b, 132 0, i32 3)]
in block entry

SLP: update deps of [%0 = load i32, i32* getelementptr inbounds ([4
x i32], [4 x 132]* @b, 132 0, 132 0); %2 = load i32, i32* getelementptr
inbounds ([4 x 132], [4 x i32]* @b, i32 0, i32 1); %4 = load i32, i32*
getelementptr inbounds ([4 x 1i32], [4 x i132]* @b, 132 0, i32 2); %6 = load
i32, i32* getelementptr inbounds ([4 x i32], [4 x i32]* @b, 132 0, i32 3)]

SLP: update deps of / %2 = load i32, i32* getelementptr inbounds
([4 x 1i32], [4 x i32]* @b, i32 0, i32 1)
SLP: update deps of / %4 = load i32, i32* getelementptr inbounds

([4 x i32], [4 x i32]* @b, i32 0, i32 2)

SLP: update deps of / %6 = load i32, i32* getelementptr inbounds
([4 x 132], [4 x i32]* @b, i32 0, i32 3)

SLP: gets ready on update: %0 = load i32, i32* getelementptr inbounds
([4 x 132], [4 x i32]* @b, i32 0, i32 0)

SLP: We are able to schedule this bundle.

SLP: added a vector of loads.

SLP: Checking user: store i32 %add, i32* getelementptr inbounds ([4 X
i32], [4 x i32]* @a, i32 0, i32 0).

SLP: Internal user will be removed: store i32 %add, i32* getelementptr
inbounds ([4 x 132], [4 x 132]* @a, i32 0, 132 0).

SLP: Checking user: store i32 %addl, i32* getelementptr inbounds ([4 x
i32], [4 x i32]* @a, 132 0, i32 1).

SLP: Internal user will be removed: store i32 %addl, i32* getelementptr
inbounds ([4 x 132], [4 x 132]* @a, i32 0, 132 1).

SLP: Checking user: store i32 %add2, i32* getelementptr inbounds ([4 x
i32], [4 x i32]* @a, i32 @, i32 2).

SLP: Internal user will be removed: store i32 %add2, i32* getelementptr
inbounds ([4 x 132], [4 x 1i32]* @a, i32 0, 132 2).

SLP: Checking user: store i32 %add3, i32* getelementptr inbounds ([4 x
i32], [4 x i32]* @a, i32 0, i32 3).

SLP: Internal user will be removed: store 132 %add3, i32* getelementptr
inbounds ([4 x 132], [4 x 132]* @a, i32 0, 132 3).

SLP: Checking user: %add = add nsw 132 %1, %0.

SLP: Internal user will be removed: %add = add nsw 132 %1, %0.

SLP: Checking user: %addl = add nsw i32 %3, %2.

SLP: Internal user will be removed: %addl = add nsw 132 %3, %2.

SLP: Checking user: %add2 = add nsw i32 %5, %4.

SLP: Internal user will be removed: %add2 = add nsw 132 %5, %4.

SLP: Checking user: %add3 = add nsw i32 %7, %6.

SLP: Internal user will be removed: %add3 = add nsw i32 %7, %6.

SLP: Checking user: %add = add nsw i32 %1, %0.

SLP: Internal user will be removed: %add = add nsw i32 %1, %0.

SLP: Checking user: %addl = add nsw i32 %3, %2.

SLP: Internal user will be removed: %addl = add nsw i32 %3, %2.

SLP: Checking user: %add2 = add nsw i32 %5, %4.

SLP: Internal user will be removed: %add2 = add nsw i32 %5, %4.

SLP: Checking user: %add3 = add nsw i32 %7, %6.

SLP: Internal user will be removed: %add3 = add nsw i32 %7, %6.

SLP: Calculating cost for tree of size 4.

SLP: Adding cost -3 for bundle that starts with store 132 %add, i32*
getelementptr inbounds ([4 x 132], [4 x 132]* @a, 132 0, 132 0)

SLP: Adding cost -3 for bundle that starts with %add = add nsw i32 %1, %0

SLP: Adding cost -3 for bundle that starts with %1 = load i32, i32*
getelementptr inbounds ([4 x 132], [4 x 132]* @c, 132 0, 132 0)

SLP: Adding cost -3 for bundle that starts with %0 = load i32, i32*
getelementptr inbounds ([4 x 132], [4 x 132]* @b, i32 0, 132 0)

SLP: #LV: 0, Looking at %add = add nsw 132 %1, %0

SLP: #LV: 1 add, Looking at %1 = load 132, i32* getelementptr inbounds
([4 x i32], [4 x i32]* @c, i32 0, i32 0)

SLP: #LV: 2 , Looking at %0 = load 132, i32* getelementptr inbounds ([4
x i32], [4 x i32]* @b, i32 0, i32 0)

SLP: SpillCost=0

SLP: Total Cost -12.

SLP: Found cost=-12 for VF=4

SLP: Decided to vectorize cost=-12

SLP: schedule block entry

SLP: initially in ready list: store 132 %add, i32* getelementptr
inbounds ([4 x i32], [4 x i32]* @a, 132 0, 132 0)

SLP: schedule [store i32 %add, 1i32* getelementptr inbounds ([4 x i32],
[4 x i32]* @a, i32 0, i32 0); store 132 %addl, i32* getelementptr inbounds
([4 x i32], [4 x i32]* @a, i32 0, i32 1); store i32 %add2, i32*
getelementptr inbounds ([4 x i32], [4 x 132]* @a, 132 0, i32 2); store i32
%add3, i32* getelementptr inbounds ([4 x 132], [4 x 1i32]* @a, 132 0, 1i32
3)]

SLP: gets ready (def): [%add = add nsw i32 %1, %0; %addl = add nsw
i32 %3, %2; %add2 = add nsw 132 %5, %4; %add3 = add nsw 132 %7, %6]

SLP: schedule [%add = add nsw i32 %1, %0; %addl = add nsw 132 %3, %2;
%add2 = add nsw 132 %5, %4; %add3 = add nsw 132 %7, %6]

SLP: gets ready (def): [%1 = load i32, i32* getelementptr inbounds ([4
x i32], [4 x i32]* @c, i32 0, 132 0); %3 = load i32, i32* getelementptr
inbounds ([4 x 132], [4 x 1i32]* @c, i32 0, 132 1); %5 = load i32, i32*
getelementptr inbounds ([4 x i32], [4 x 1i32]* @c, 132 0, i32 2); %7 = load
i32, i32* getelementptr inbounds ([4 x i32], [4 x 132]* @c, 132 0, i32 3)]
SLP: gets ready (def): [%0 = load i32, i32* getelementptr inbounds ([4
x i32], [4 x i32]* @b, i32 0, i32 0); %2 = load i32, i32* getelementptr
inbounds ([4 x i32], [4 x i32]* @b, i32 0, i32 1); %4 = load i32, i32*
getelementptr inbounds ([4 x i32], [4 x 1i32]* @b, i32 0, i32 2); %6 = load
132, i32* getelementptr inbounds ([4 x 132], [4 x 132]* @b, 132 0, i32 3)]
SLP: schedule [%7 = load 132, i32* getelementptr inbounds ([4 x 132],
[4 x 1i32]* @c, 132 0, 132 0); %6 = load 132, i32* getelementptr inbounds
([4 x 1i32], [4 x i32]* @c, i32 0, i32 1); %5 = load i32, i32*
getelementptr inbounds ([4 x 132], [4 x 132]* @c, 132 0, i32 2); %4 = load
132, i32* getelementptr inbounds ([4 x 1i32], [4 x 132]* @c, 132 0, i32 3)]
SLP: schedule [%3 = load 132, i32* getelementptr inbounds ([4 x 132],
[4 x 1i32]* @b, 132 0, 132 0); %2 = load 132, i32* getelementptr inbounds
([4 x i32], [4 x i32]* @b, i32 0, i32 1); %1 = load i32, i32*
getelementptr inbounds ([4 x 132], [4 x 132]* @b, 132 0, i32 2); %0 = load
i32, i32* getelementptr inbounds ([4 x 1i32], [4 x 132]* @b, 132 0, i32 3)]
SLP: Extracting 0 values .

SLP: Erasing scalar: store 132 %add, 132* getelementptr inbounds ([4 X
i32], [4 x i32]* @a, 132 0, i32 0).
SLP: Erasing scalar: store 132 %addl, i32* getelementptr inbounds ([4 X

i32], [4 x i32]* @a, i32 0, i32 1).

SLP: Erasing scalar: store 132 %add2, i32* getelementptr inbounds ([4 X
i32], [4 x i32]* @a, 132 0, i32 2).

SLP: Erasing scalar: store 132 %add3, i32* getelementptr inbounds ([4 X
i32], [4 x i32]* @a, i32 0, i32 3).

SLP: Erasing scalar: %add = add nsw i32 %8, %3.

SLP: Erasing scalar: %add1l add nsw 132 %7, %2.

SLP: Erasing scalar: %add2 add nsw i32 %6, %1.

SLP: Erasing scalar: %add3 add nsw i32 %5, %0.

SLP: Erasing scalar: %8 = load 132, i32* getelementptr inbounds ([4 X
i32], [4 x i32]* @c, i32 0, i32 0).

SLP: Erasing scalar: %7 = load 132, i32* getelementptr inbounds ([4 X
i32], [4 x i32]* @c, i32 0, i32 1).

SLP: Erasing scalar: %6 = load 132, i32* getelementptr inbounds ([4 X
i32], [4 x i32]* @c, i32 0, i32 2).

SLP: Erasing scalar: %5 = load 132, i32* getelementptr inbounds ([4 X
i32], [4 x i32]* @c, i32 0, i32 3).

SLP: Erasing scalar: %3 = load 132, i32* getelementptr inbounds ([4 X
i32], [4 x i32]* @b, i32 0, i32 0).

SLP: Erasing scalar: %2 = load i32, i32* getelementptr inbounds ([4 x
i32], [4 x i32]* @b, i32 0, i32 1).

SLP: Erasing scalar: %1 = load i32, i32* getelementptr inbounds ([4 x
i32], [4 x i32]* @b, i32 0, i32 2).

SLP: Erasing scalar: %0 = load i32, i32* getelementptr inbounds ([4 x
i32], [4 x i32]* @b, i32 0, i32 3).

SLP: Optimizing 0 gather sequences instructions.

SLP: vectorized "addsub"

The final vectorized output is:

; ModuleID = 'addsub.1ll'
target triple = "aarch64-unknown-linuxgnu"

@a
@b
@c

global [4 x 132] zeroinitializer, align 4
global [4 x 132] zeroinitializer, align 4
global [4 x 132] zeroinitializer, align 4

define void @addsub() {
entry:

%0 = load <4 x i32>, <4 x 1i32>* bitcast ([4 x 1i32]* @b to <4 x i32>*),
align 4

%1 = load <4 x i32>, <4 x 132>* bitcast ([4 x 132]* @c to <4 x 132>*),
align 4

%2 = add nsw <4 x i32> %1, %0

store <4 x 132> %2, <4 x 132>* bitcast ([4 x 132]* @a to <4 x 132>*),
align 4

ret void

}

Summary

In this chapter, we concluded the optimizer part of the compiler where we had seen block
level optimizations. We took the examples of loop optimization, Scalar Evolution,
Vectorization, and LLVM Intrinsic functions. We also saw how SLP Vectorization is
handled in LLVM. However, there are many other such optimizations that you can look
into and get a hold of.

In the next chapter, we will see how this IR is converted to Directed Acyclic Graph. We
have some optimizations at selectionDAG level as well, which we will take a look at.

Chapter 6. IR to Selection DAG phase

Until the previous chapter, we saw how a frontend language can be converted to LLVM
IR. We also saw how IR can be transformed into more optimized code. After a series of
analysis and transformation passes, the final IR is the most optimized machine
independent code. However, the IR is still an abstract representation of the actual machine
code. The compiler has to generate target architecture code for execution.

LLVM uses DAG—a directed acyclic graph representation for code generation. The idea
is to convert IR into a SelectionDAG and then go over a series of phases—DAG combine,
legalization, instruction selection, instruction scheduling, etc—to finally allocate registers
and emit machine code. Note that register allocation and instruction scheduling take place
in an intertwined manner.

We are going to cover following topics in this chapter:

Converting IR to selectionDAG

Legalizing selectionDAG

Optimizing selectionDAG

Instruction selection

Scheduling and emitting machine instructions
Register allocation

Code emission

Converting IR to selectionDAG

An IR instruction can be represented by an SDAG node. The whole set of instructions thus
forms an interconnected directed acyclic graph, with each node corresponding to an IR
instruction.

For example, consider the following LLVM IR:

$ cat test.ll

define 132 @test(i32 %a, 132 %b, i32 %c) {
%add = add nsw i32 %a, %b

%div = sdiv 132 %add, %c

ret i32 %div

}

LLVM provides a SelectionDAGBuilder interface to create DAG nodes corresponding to
IR instructions. Consider the binary operation:

%add = add nsw i32 %a, %b

The following function is called when the given IR is encountered:

void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
// Note: this doesn't use InstVisitor, because it has to work with
// ConstantExpr's in addition to instructions.
switch (Opcode) {
default: llvm_unreachable("Unknown instruction type encountered!");
// Build the switch statement using the Instruction.def file.
#define HANDLE_INST(NUM, OPCODE, CLASS) \
case Instruction::0OPCODE: visit##OPCODE((const CLASS&)I); break;
#include "llvm/IR/Instruction.def"

b
}

Depending on the opcode—which is Add here—the corresponding visit function is
invoked. In this case, visitAdd() is invoked, which further invokes the visitBinary()
function. The visitBinary() function is as follows:

void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
SDValue Opl = getValue(I.getOperand(0));
SDValue Op2 = getValue(I.getOperand(1));

bool nuw = false;
bool nsw = false;
bool exact = false;
FastMathFlags FMF;

if (const OverflowingBinaryOperator *OFBinOp =
dyn_cast<const OverflowingBinaryOperator>(&I)) {
OFBinOp->hasNoUnsignedWrap();
OFBinOp->hasNoSignedWrap();

nuw
nsw

}

if (const PossiblyExactOperator *ExactOp =
dyn_cast<const PossiblyExactOperator>(&I))
exact = ExactOp->isExact();

if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&I))
FMF = FPOp->getFastMathFlags();

SDNodeFlags Flags;
Flags.setExact(exact);
Flags.setNoSignedWrap(nsw);
Flags.setNoUnsignedwWrap(nuw);
if (EnableFMFINDAG) {
Flags.setAllowReciprocal (FMF.allowReciprocal());
Flags.setNoInfs(FMF.noInfs());
Flags.setNoNaNs(FMF.noNaNs());
Flags.setNoSignedZeros(FMF.noSignedZeros());
Flags.setUnsafeAlgebra(FMF.unsafeAlgebra());
}
SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(),
Opl.getValueType(), Op1, Op2, &Flags);
setValue(&I, BinNodeValue);
}

This function takes two operands of the binary operator from IR and stores them into
sbvalue type. Then it invokes the DAG.getNode() function with opcode of the binary
operator. This results in formation of a DAG node, which somewhat looks like the
following:

ey

fra_____ﬁ\

add
Oxbd81100
i32

=

The operands 0 and 1 are load DAG nodes.

Consider the IR:

%div = sdiv i32 %add, %c

On encountering the sdiv instruction, the function visitsbiv() is invoked.

void SelectionDAGBuilder::visitSDiv(const User &I) {
SDvValue Opl = getValue(I.getOperand(0));
SDvValue 0Op2 = getValue(I.getOperand(1l));

SDNodeFlags Flags;

Flags.setExact(isa<PossiblyExactOperator>(&I) &&
cast<PossiblyExactOperator>(&I)->isExact());

setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Opl.getValueType(),

Opl, Op2, &Flags));
}

Similar to visitBinary(), this function also stores the two operands into SDvValue gets a
DAG node with 1SD: :SDIV as its operator. The node looks like the following:

0 1 Y—

sdiv
Oxbd811a0

X/f,p- 132

In our IR, the operand 0 is %add. Operand 1 is %c, which is passed as an argument to the
function, which transforms to a load node when converting IR to SelectionDAG. For
implementation of Load DAG node, go through the visitLoad() function in the
lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp file.

After visiting all the IR instructions mentioned earlier, finally the IR is converted to
SelectionDAG as follows:

|

(Framelndex<-1>) I'/iintr)-'Toker?\ (Framelndex<-2>) (undef) (Framelndex<-3>)
Oxbd80cal) Oxbd39e28 Oxbd80e80 Oxbd80d40 0xbd80fcO
0 i32 el ch Y, i P SN 132 y,
’ I
S0 | 2. EDERELS
," load<LD4[FixedStack-1]> load<LD4[FixedStack-2]> load<LD4[FixedStack-3]>
! 0xbd80de0 0xbd80f20 0xbd81060
I L) . 1 |
U 2 | e)
I
I
I
: 0| 1
: add
]' Oxbd8 1100
i i32
I
i
]
(Recicer GEAY) : L !
Register #EAX | !
: sdiv
0xbd812e0 !
! 0Oxbd811a0
i32 '
N— i32
1 L EE 4
I
o1 1f2
/T:U'gchunslmll{(]}\' Conv TR
'ToRe;
Oxbd8 1240 o g
0Oxbd81380
il6
| S ch | glue
L=4--1-
(|
AEERES
X86ISD::RET_FLAG
Oxbd81420
A = »
A
1

In the preceding diagram, note the following:

¢ Black arrows mean data flow dependency

e Red arrows mean glue dependency

¢ Blue dashed arrows mean chain dependency
Glue prevents the two nodes from being broken up during scheduling. Chain dependencies
prevent nodes with side effects. A data dependency indicates when an instruction depends

dag-combinel input for test:

on the result of a previous instruction.

Legalizing SelectionDAG

In the preceding topic, we saw how an IR is converted to SelectionDAG. The whole
process didn’t involve any knowledge of target architecture for which we are trying to
generate code. A DAG node might be illegal for the given target architecture. For
example, the X86 architecture doesn’t support the sdiv instruction. Instead, it supports
sdivrem instruction. This target specific information is conveyed to the SelectionDAG
phase by the TargetLowering interface. Targets implement this interface to describe how
LLVM IR instructions should be lowered to legal SelectionDAG operations.

In our IR case, we need to ‘expand’ the sdiv instruction to 'sdivrem' instruction. In the
function void SelectionDAGLegalize: :LegalizeOp(SDNode *Node), the
TargetLowering: :Expand case is encountered, which invokes the ExpandNode () function
call on that particular node.

void SelectionDAGLegalize::LegalizeOp(SDNode *Node){

case TargetLowering: :Expand:
ExpandNode (Node) ;
return;

This function expands SDIV into the SDIVREM node:

case ISD::SDIV: {
bool isSigned = Node->getOpcode() == ISD::SDIV;
unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
EVT VT = Node->getValueType(0);
SDVTList VTs = DAG.getVTList(VT, VT);
if (TLI.isOperationLegalOrCustom(DivRemOpc, VT) ||
(isDivRemLibcallAvailable(Node, isSigned, TLI) &&
useDivRem(Node, isSigned, true)))
Tmpl = DAG.getNode(DivRemOpc, dl, VTs, Node->getOperand(0),
Node->getOperand(1));
else if (isSigned)
Tmpl = ExpandIntLibCall(Node, true,
RTLIB::SDIV_1I8,
RTLIB::SDIV_I16, RTLIB::SDIV_1I32,
RTLIB::SDIV_I64, RTLIB::SDIV_I128);
else
Tmpl = ExpandIntLibCall(Node, false,
RTLIB: :UDIV_1I8,
RTLIB::UDIV_I16, RTLIB::UDIV_I32,
RTLIB::UDIV_I64, RTLIB::UDIV_I128);
Results.push_back(Tmp1l);
break;

}
Finally, after legalization, the node becomes ISD: : SDIVREM:

!

0 I: ==

sdivrem

Oxbbecdc

| 32 | 32

Thus the above instruction has been ‘legalized‘ mapping to the instruction supported on
the target architecture. What we saw above was an example of expand legalization. There
are two other types of legalization—promotion and custom. A promotion promotes one
type to a larger type. A custom legalization involves target-specific hook (maybe a custom
operation—majorly seen with IR intrinsic). We leave it to the readers to explore these
more in the CodeGen phase.

Optimizing SelectionDAG

After converting the IR into SelectionDAG, many opportunities may arise to optimize the
DAG itself. These optimization takes place in the DAGCombiner phase. These opportunities
may arise due to set of architecture specific instructions.

Let’s take an example:

#include <arm_neon.h>

unsigned hadd(uint32x4_t a) {
return a[0] + a[1] + a[2] + a[3];

}

The preceding example in IR looks like the following:

define 132 @hadd(<4 x 132> %a) nounwind {
%vecext = extractelement <4 x 132> %a, 132 3
%vecextl = extractelement <4 x 132> %a, 132 2
%add = add 132 %vecext, %vecextil
%vecext2 = extractelement <4 x i32> %a, 132 1
%add3 = add 132 %add, %vecext2
%vecext4d = extractelement <4 x 132> %a, 132 0
%add5 = add i32 %add3, %vecext4
ret 132 %add5

}

The example is basically extracting single element from a vector of <4xi32> and adding
each element of the vector to give a scalar result.

Advanced architectures such as ARM has one single instruction to do the preceding
operation—adding across single vector. The SDAG needs to be combined into a single
DAG node by identifying the preceding pattern in SelectionDAG.

This can be done while selecting instruction in AArch64DAGToDAGISel.

SDNode *AArch64DAGToODAGISel::Select(SDNode *Node) {

case ISD::ADD: {
if (SDNode *I = SelectMLAV64LaneV128(Node))
return I;
if (SDNode *I = SelectADDV(Node))
return I;
break;

b
}

We define the selectAbpv() function as follows:

SDNode *AArch64DAGTODAGISel: :SelectADDV(SDNode *N) {
if (N->getValueType(0) != MVT::132)
return nullptr;
SDValue SecondAdd;
SDValue FirstExtr;
if (!checkVectorElemAdd(N, SecondAdd, FirstExtr))

return nullptr;

SDValue Vector = FirstExtr.getOperand(0);
if (Vector.getValueType() != MVT::v4i32)
return nullptr;

uinté64_t LaneMask = 0;

ConstantSDNode *LaneNode = cast<ConstantSDNode>(FirstExtr -
>getOperand(1));

LaneMask |= 1 << LaneNode->getZExtValue();

SDValue ThirdAdd;
SDhValue SecondExtr;
if (!checkVectorElemAdd(SecondAdd.getNode(), ThirdAdd, SecondExtr))
return nullptr;
if (Vector !'= SecondExtr.getOperand(0))
return nullptr;
ConstantSDNode *LaneNode2 = cast<ConstantSDNode>(SecondExtr -
>getOperand(1));
LaneMask |= 1 << LaneNode2->getZExtValue();
SDValue LHS = ThirdAdd.getOperand(0);
SDValue RHS = ThirdAdd.getOperand(1);
if (LHS.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
RHS.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
LHS.getOperand(@) != Vector ||
RHS.getOperand(0) !'= Vector)
return nullptr;
ConstantSDNode *LaneNode3 = cast<ConstantSDNode>(LHS->getOperand(1));
LaneMask |= 1 << LaneNode3->getZExtValue();
ConstantSDNode *LaneNode4 = cast<ConstantSDNode>(RHS->getOperand(1));
LaneMask |= 1 << LaneNode4->getZExtValue();
if (LaneMask !'= OxOF)
return nullptr;
return CurDAG->getMachineNode(AArch64: :ADDVv4i32v, SDLoc(N), MVT::i32,
Vector);

}

Note that we have defined a helper function checkvectorElemAdd() earlier to check the
chain of add selection DAG nodes.

static bool checkVectorElemAdd(SDNode *N, SDValue &Add, SDValue &Extr) {
SDvValue Op® = N->getOperand(0);
SDvValue Opl = N->getOperand(1);
const unsigned Opc® = OpO->getOpcode();
const unsigned Opcl = Opl->getOpcode();

const bool AddLeft = (Opc® == ISD::ADD && Opcl ==
ISD::EXTRACT_VECTOR_ELT);

const bool AddRight = (Opc® == ISD::EXTRACT_VECTOR_ELT && Opcl ==
ISD::ADD);

if (!'(AddLeft || AddRight))
return false;

Add
Extr

AddLeft ? Op0O : Opil;
AddLeft ? Opl : OpoO;

return true;

}

Let’s see how this affects the code generation:

$ 1llc -mtriple=aarch64-linux-gnu -verify-machineinstrs hadd.1ll

Before the preceding code, the final code generated will be as follows:

mov w8, v0.s[3]
mov w9, v0.s[2]
add w8, w8, w9
mov w9, vO.s[1]
add w8, w8, w9
fmov w9, sO
add w0, w8, w9
ret

Clearly, the preceding code is a scalar code. After adding the preceding patch and
compiling, the code generated will be as follows:

addv s0, v0.4s
fmov w0, sO
ret

Instruction Selection

The SelectionDAG at this phase is optimized and legalized. However, the instructions are
still not in machine code form. These instructions need to be mapped to architecture-
specific instructions in the SelectionDAG itself. The TableGen class helps select target-
specific instructions.

The codeGenAndEmitDAG() function calls the DoInstructionSelection() function that
visits each DAG node and calls the Select() function for each node. The Select ()
function is the main hook targets implement to select a node. The Sselect () function is a
virtual method to be implemented by the targets.

For consideration, assume our target architecture is X86. The

X86DAGTODAGISel: :Select () function intercepts some nodes for manual matching, but
delegates the bulk of the work to the X86DAGToDAGISel: : SelectCode() function. The
X86DAGTODAGISel: :SelectCode () function is auto generated by TableGen. It contains the
matcher table, followed by a call to the generic SelectionDAGISel: :SelectCodeCommon()
function, passing it the table.

SDNode *ResNode = SelectCode(Node);

For example, consider the following:

$ cat test.ll

define 132 @test(i32 %a, 132 %b, i32 %c) {
%add = add nsw 132 %a, %b

%div = sdiv i32 %add, %c

ret i32 %div

}

Before instruction selection, the SDAG looks like the following:

$ 1lc -view-isel-dags test.ll

Remider GEAY)
Register %CEAX

Oxbbec2e(
i32

sdivrem

Oxbbec4c)

i32 | i32

T 0 2

TargetConstant<(> T
Oxbbec240 opy Totes
Oxbbec380

il6

X86ISD::RET_FLAG

Oxbbec420

ch

dag-combine2 input for test:

(Framelndex<-1>) l"I:'.nlr'g.f'l'oken\ (Framelndex<-2>) (undef) [Framelndex<-3>)
Oxbbebeal Oxbbade28 Oxbbebe30 Oxbbebd40 OxbbebficO
L 132 j"\ ch g i32 32 A\ 132 <
i :ri:!\i.‘
! ~
S 8 | 1 2 0 1 2 P o | 1 2)
J’ load<LD4[FixedStack-1](align=16)> load<LD4[FixedStack-2]> load<LD4[FixedStack-3](align=8)>
; Oxbbebded Oxbbebf20 Oxbbec060
I f . 7
i \ 132 ch) 32 ch J 4\ 132 ch
]
I
I
0 |
add
Oxbbec 100
32

After Instruction Selection, SDAG looks like the following:

$ 1llc -view-sched-dags test.1ll

o ~ F .
fEﬂlr}'TUk:En-\ fTurg:lCunslﬂnl(I}‘\ rTurgelFrdmelndex{--I}\ Register Senoreg TargetConstant<(>
Oxh298=28 Oxb2e0560 Oxb2dfe80 Oxb2e0240 Oxb2e0600
I L, ¥ N J/ =) . == £
e h [} L5, Tl - =
-] W el
i : | G T
P Al
‘ i i E N ZHEEFIEAEIER ———
¢ ! ' N > : TargetFramelndex<-2>
2 ! \ ' MOV 32em=Mem: LD4 [FixedStack- | [(align=16)>
I v] Oxb2difc0
1 \ M Uxb2dfded
| Y Ll
1 \ " * N i32 [
| R e A e T
1 x N -~ o B TR S e e 2y ~
| “ R i ~
— & n|||2|1|4|5]ﬁ
Register FEAX) ~ %
1 S ¥ ADD3R2rm=Mem:LD4#[FixedStack-2]=
(xh2e02el) | G :
o 1 B ! Oxb2c0100
32 o
— [i [ch
- I
e 1
(o1]2)
CopyToReg
Oxh2e0al
ch | glue
E N
] ! f_au
rfT Y
argetFramelndex<-3> A
rget T
Oxb2e0 1 al
- Oxb2e0740
i32 ;
glue

\ CopyFromReg
A Oxb2e0880

. ﬁi32 ch | glue

CopyToReg
Oxh2e0380

scheduler nput for test:

Scheduling and emitting machine
instructions

Until now, we have been performing the operations on DAG. Now, for the machine to
execute, we need to convert the DAGs into instruction that the machine can execute. One
step towards it is emitting the list of instructions into MachineBasicBlock. This is done by
the Scheduler, whose goal is to linearize the DAGs. The scheduling is dependent on the
target architecture, as certain Targets will have target specific hooks which can affect the
scheduling.

The class InstrEmitter::EmitMachineNode takes SDNode *Node as one of the input
parameters for which it will be emitting machine instructions of the class MachineInstr.
These instructions are emitted into a MachineBasicBlock.

The function calls EmitSubregNode, EmitCopyToRegClassNode and EmitRegSequence for
the handling of subreg insert/extract, COPY_T0_REGCLASS, and REG_SEQUENCE respectively.

The call MachineInstrBuilder MIB = BuildMI(*MF, Node->getDebugLoc(), II); is
used to build the Machine Instruction. The CreatevirtualRegisters function is called to
add result register values created by this instruction.

The for loop emits the operands of the instruction :

for (unsigned i = NumSkip; i !'= NodeOperands; ++1)
AddOperand(MIB, Node->getOperand(i), i-NumSkip+NumDefs, &II,
VRBaseMap, /*IsDebug=*/false, IsClone, IsCloned);
MBB->insert(InsertPos, MIB);

It inserts the instruction into its position in the MachineBasicBlock.

The following code marks unused registers as dead:

if (!UsedRegs.empty() || II.getImplicitDefs())
MIB->setPhysRegsDeadExcept(UsedRegs, *TRI);

As we had discussed earlier that the target specific hooks affect the scheduling, the code
for that in this function is as follows:

if (II.hasPostISelHook())
TLI->AdjustInstrPostInstrSelection(MIB, Node);

The AdjustInstrPostInstrSelection is a virtual function implemented by Targets.

Let’s take an example to see the machine instructions generated in this step. To do this, we
need to pass the command-line option -print-machineinstrs to the 11c tool. Let’s take
the same testcode used earlier:

$ cat test.ll

define i32 @test(i32 %a, i32 %b, i32 %c) {
%add = add nsw i32 %a, %b

%div = sdiv i32 %add, %c

ret i32 %div

}

Now, invoke the llc command and pass the -print-machineinstrs to it. Pass test.11 as
the input file and store the output in the outfile:

llc -print-machineinstrs test.ll > outfile 2>&1

The outfile is large, containing many other phases of code generation apart from
scheduling. We need to look into the section after “# After Instruction Selection:” in
the output file, which is as follows:

After Instruction Selection:
Machine code for function test: SSA
Function Live Ins: %EDI in %vreg®, %ESI in %vregl, %EDX in %vreg2
BB#0: derived from LLVM BB %0
Live Ins: %EDI %ESI %EDX

%vreg2<def> COPY %EDX; GR32:%vreg2

%vregl<def> = COPY %ESI; GR32:%vregl

%vregO<def> = COPY %EDI; GR32:%vreg0

%vreg3<def,tiedl> = ADD32rr %vregO<tied0>, %vregl, %EFLAGS<imp-
def, dead>; GR32:%vreg3,%vreg0,%vregl

%EAX<def> = COPY %vreg3; GR32:%vreg3

CDQ %EAX<imp-def>, %EDX<imp-def>, %EAX<imp-use>

IDIV32r %vreg2, %EAX<imp-def>, %EDX<imp-def,dead>, %EFLAGS<imp-
def,dead>, %EAX<imp-use>, %EDX<imp-use>; GR32:%vreg2

%vregd<def> = COPY %EAX; GR32:%vreg4

%EAX<def> = COPY %vreg4,; GR32:%vreg4

RETQ %EAX
End machine code for function test.

We can see in the output that certain places being taken by physical registers and some by
virtual registers. We can also see the machine instruction IDIV32r in the output. In the
next section, we will see how physical registers are assigned to these virtual registers
present in the code.

Register allocation

The next step of the code generator is register allocation. As we saw in the previous
example, some of the registers being used were virtual registers. Register allocation is the
task of assigning physical registers to these virtual registers. In LLVM, the virtual registers
can be infinite in number, but the numbers of physical registers are limited depending on
the target. So, by register allocation, we aim at maximizing the number of physical
registers being assigned to virtual registers. We must note that the physical registers are
limited in number, so it is not always possible that all the virtual registers can be assigned
a physical register. If there is no physical register available at some point and we need a
physical register for a variable, we might move a variable that is present in physical
register to main memory and thus assign the freed register to the variable we want. This
process of moving a variable from physical register to memory is called spilling. There
are various algorithms to calculate which variable should be spilled from register to
memory.

Another important role that the register allocator plays is SSA form deconstruction. The
phi instructions present in the machine instruction till now need to be replaced with a
regular instruction. The traditional way of doing so is to replace it with a copy instruction.

It must be noted that some of the machine fragments have already registers assigned to
them. This is due to target requirements where it wants certain registers fixed to certain
operations. Apart from these fixed registers, the register allocator takes care of the rest of
the non-fixed registers.

Register allocation for mapping virtual registers to physical registers can be done in the
following two ways:

¢ Direct Mapping: It makes use of the TargetRegisterInfo class and the
MachineOperand class. The developer in this case needs to provide the location where
load and store instructions are to be inserted to get values from the memory and store
values in the memory.

¢ Indirect Mapping: In this, the virtRegMap class takes care of inserting loads and
stores. It also gets value from memory and stores value to memory. We need to use
the VirtRegMap::assignVvirt2Phys(vreg, preg) function for mapping virtual
register to physical register.

LLVM has four register allocation techniques. We will briefly look what they are without
going into the details of the algorithm. The four allocators are as follows:

¢ Basic Register Allocator: The most basic register allocation technique of all the
techniques. It can serve as a starter for implementing other register allocation
techniques. The algorithm makes use of spill weight for prioritizing the virtual
registers. The virtual register with the least weight gets the register allocated to it.
When no physical register is available, the virtual register is spilled to memory.

e Fast Register Allocator: This allocation is done at basic block level at a time and
attempts to reuse values in registers by keeping them in registers for longer period of

time.

o PBQP Register Allocator: As mentioned in the source code file for this register
allocation(11vm/1ib/CodeGen/RegAllocPBQP.cpp), this allocator works by
representing the register allocator as a PBQP problem and then solving it using PBQP

solver.

¢ Greedy Register Allocator: This is one of the efficient allocator of LLVM and
works across the functions. Its allocation is done using live range splitting and

minimizing spill costs.

Let’s take an example to see the register allocation for the previous testcode test.11 and
see how vregs are replaced with actual registers. Let’s take the greedy allocator for
allocation. You can choose any other allocator as well. The target machine used is x86-64

machine.

$ 1llc test.ll -regalloc=greedy -o testl.s

$ cat testl.s

.text
.file "test.1ll"
.globl test

.align 16, 0x90
.type test,@function

test: # @test
.cfi_startproc
BB#0:
movl %edx, %ecx
leal (%rdi,%rsi), %eax
cltd
idivl %ecx
retq
.Lfunc_endo:
.size test, .Lfunc_end0-test
.cfi_endproc
.section ".note.GNU-stack","",6 @progbits

We can see all the vregs present are gone now and have been replaced by actual registers.
The machine used here was x86-64. You can try out register allocation with pbqgp allocator
and see the difference in allocation. The leal (%rdi,%rsi), %eax instruction will be

replaced with the following instructions:

movl %esi, %edx
movl %edi, %eax
leal (%rax, %rdx), %eax.

Code Emission

We started from LLVM IR in the first section and converted it to SelectioDAG and then to
MachineInstr. Now, we need to emit this code. Currently, we have LLVM JIT and MC to
do so. LLVM JIT is the traditional way of generating the object code for a target on the go
directly in the memory. What we are more interested in is the LLVM MC layer.

The MC layer is responsible for generation of assembly file/object file from the
MachineInstr passed on to it from the previous step. In the MC Layer, the instructions are
represented as MCInst, which are lightweight, as in they don’t carry much information
about the program as MachineInstr.

The code emission starts with the AsmPrinter class, which is overloaded by the target
specific AsmPrinter class. This class deals with general lowering process by converting
the MachineFunction functions into MC label constructs by making use of the target
specific MCInstLowering interface(for x86 it is Xx86MCInstLower class in the
lib/Target/x86/X86MCInstLower .cpp file).

Now, we have MCInst instructions that are passed to MCStreamer class for further step of
generating either the assembly file or object code. Depending on the choice MCStreamer
makes use of its subclass MCAsmStreamer to generate assembly code and
MCObjectStreamer to generate the object code.

The target specific MCInstPrinter is called by MCAsmStreamer to print the assembly
instructions. To generate the binary code, the LLVM object code assembler is called by
MCObjectStreamer. The assembler in turn calls the
MCCodeEmitter::EncodeInstruction() to generate the binary instructions.

We must note that the MC Layer is one of the big difference between LLVM and GCC.
GCC always outputs assembly and then needs an external assembler to transform this
assembly into object files, whereas for LLVM using its own assembler we can easily print
the instructions in binary and by putting some wraps around them can generate the object
file directly. This not only guarantees that the output emitted in text or binary forms will
be same but also saves time over GCC by removing the calls to external processes.

Now, let’s take an example to look at the MC Instruction corresponding to assembly using
the 11c tool. We make use of the same testcode test.11 file used earlier in the chapter.

To view the MC Instructions, we need to pass the command-line option -asm-show-inst
option to 11c. It will show the MC instructions as assembly file comments.

llc test.ll -asm-show-inst -o -

.text
.file "test.1ll"
.globl test

.align 16, 0x90
.type test,@function

test: # Q@test
.cfi_startproc

BB#0:

movl %edx, %ecx # <MCInst #1674 MOV32rr
<MCOperand Reg:22>
<MCOperand Reg:24>>
leal (%rdi,%rsi), %eax # <MCInst #1282 LEA64_32r

<MCOperand Reg:19>
<MCOperand Reg:39>
<MCOperand Imm:1>
<MCOperand Reg:43>
<MCOperand Imm:0>
<MCOperand Reg:0>>
cltd # <MCInst #388 CDQ>
idivl %ecx # <MCInst #903 IDIV32r
<MCOperand Reg:22>>
retq # <MCInst #2465 RETQ

<MCOperand Reg:19>>
.Lfunc_endo:
.size test, .Lfunc_endO-test
.cfi_endproc

.section ".note.GNU-stack","",@progbits

We see the MCInst and MCOperands in the assembly comments. We can also view the
binary encoding in assembly comments by passing the option -show-mc-encoding to 11c.

$ 1llc test.1ll -show-mc-encoding -o -

.text
.file "test.1ll"
.globl test

.align 16, 0x90
.type test,@function

test: # @test
.cfi_startproc
BB#0:
movl %edx, %ecx # encoding: [0x89, 6xd1]
leal (%rdi,%rsi), %eax # encoding: [0x8d, 0x04,0x37]
cltd # encoding: [0x99]
idivl %ecx # encoding: [0xf7,0xf9]
retq # encoding: [0xc3]
.Lfunc_endo:

.size test, .Lfunc_end0-test
.cfi_endproc

.section ".note.GNU-stack","",6 @progbits

Summary

In this chapter, we saw how LLVM IR is converted to SelectionDAG. The SDAG then
goes through variety of transformation. The instructions are legalized, so are the data
types. SelectionDAG also goes through the optimization phase where DAG nodes are
combined to result in optimal nodes, which may be target-spacific. After DAG combine, it
goes through instruction selection phase, where target architecture instructions are mapped
to DAG nodes. After this, the DAGs are ordered in a linear order to facilitate execution by
CPU, these DAGs are converted to MachineInstr and DAGs are destroyed. Assigning of
physical register takes place in the next step to all the virtual registers present in the code.
After this, the MC layer comes into picture and deals with the generation of Object and
Assembly Code. Going ahead in the next chapter, we will see how to define a target; the
various aspects of how a target is represented in LLVM by making use of Table Descriptor
files and TableGen.

Chapter 7. Generating Code for Target
Architecture

The code generated by the compiler finally has to execute on the target machines. The
abstract form of the LLVM IR helps to generate code for various architectures. The target
machine can be anything — CPU, GPU, DSP’s, and so on. The target machine has some
defining aspects such as the register sets, the instruction set, the calling convention of the
function, and the instruction pipeline. These aspects or properties are generated using the
tablegen tool so that they can be used easily while programming code generation for the
machine.

LLVM has a pipeline structure for the backend, where instructions travel through phases
—from the LLVM IR to SelectionDAG, then to MachineDAG, then to Machinelnstr,
and finally to MClInst. The IR is converted to SelectionDAG. SelectionDAG then goes
through legalization and optimizations. After this stage, the DAG nodes are mapped to
target instructions (instruction selection). The DAG then goes through instruction
scheduling, emitting linear sequences of instructions. The virtual registers are then allotted
the target machine registers, which involves optimal register allocation minimizing
memory spills.

This chapter describes how to represent target architecture. It also describes how to emit
assembly code.

The topics discussed in this chapter are as follows:

Defining registers and register sets
Defining the calling convention
Defining the instruction set
Implementing frame lowering
Selecting an instruction

Printing an instruction

Registering a target

Sample backend

To understand target code generation, we define a simple RISC-type architecture TOY
machine with minimal registers, say ro-r3, a stack pointer SpP, a link register, LR (for
storing the return address); and a CPSR — current state program register. The calling
convention of this toy backend is similar to the ARM thumb-like architecture—arguments
passed to the function will be stored in register sets ro-r1, and the return value will be

stored in ro.

Defining registers and register sets

Register sets are defined using the tablegen tool. Tablegen helps to maintain large number
of records of domain specific information. It factors out the common features of these
records. This helps in reducing duplication in the description and forms a structural way of
representing domain information. Please visit http://llvm.org/docs/TableGen/ to
understand tablegen in detail. TableGen files are interpreted by the TableGen binary:
1lvm-tblgen.

We have described our sample backend in the preceding paragraph, which has four
registers (ro-r3), a stack register (SP), and a link register (LR). These can be specified in
the TOYRegisterInfo.td file. The tablegen function provides the Register class, which
can be extended to specify the registers. Create a new file named TOYRegisterInfo. td.

The registers can be defined by extending the Register class.

class TOYReg<bits<16> Enc, string n> : Register<n> {
let HWEncoding = Enc;
let Namespace = "TOY";

}

The registers ro-r3 belong to a general purpose Register class. This can be specified by
extending RegistercClass.

foreach 1 = 0-3 in {
def R#1 : R<i, "r"#i >;
}

def GRRegs : RegisterClass<"TOY", [132], 32,
(add RO, R1, R2, R3, SP)>;

The remainings, register SP, LR, and CPSR, can be defined as follows:

def SP : TOYReg<13, "sp">;
def LR : TOYReg<14, "lr'">;
def CPSR : TOYReg<16, '"cpsr'">;

When the whole thing is put together, the TOYRegisterInfo.td looks like the following:

class TOYReg<bits<16> Enc, string n> : Register<n> {
let HWEncoding = Enc;
let Namespace = "TOY";

}

foreach i = 0-3 in {

def R#1 : R<i, "r"#i >;

}

def SP : TOYReg<13, "sp">;
def LR : TOYReg<14, "lr'">;

def GRRegs : RegisterClass<"TOY", [132], 32,
(add RO, R1, R2, R3, SP)>;

We can put this file in a new folder named TOY in the parent folder named Target in the

http://llvm.org/docs/TableGen/

llvm’s root directory, which is 11vm_root_directory/lib/Target/TOY/
TOYRegisterInfo.td

The tablegen tool 11vm-tablegen, processes this . td file to generate the .inc file, which
generally has enums generated for these registers. These enums can be used in the .cpp
files, in which the registers can be referenced as T0Y: :Ro.

Defining the calling convention

The calling convention specifies how values are passed to and returned from a function
call. Our TOY architecture specifies that two arguments are passed in two registers, ro and
r1, while the remaining ones are passed to the stack. Calling convention defined is then
used in the Instruction Selection phase by referring to the function pointer.

While defining a calling convention, we have to represent two sections—one to define the
convention return value, and other to define the convention for argument passing. The
parent class CallingConv is inherited to define the calling convention.

In our TOY architecture, the return value is stored in ro register. If there are more
arguments, integer values get stored in stack slots that are 4 bytes in size and 4-byte
aligned. This can be declared in ToYCallingConv.td as follows:

def RetCC_TOY : CallingConv<[
CCIfType<[132], CCAssignToReg<[RO]>>,
CCIfType<[i32], CCAssignToStack<4, 4>>
1>;

The argument passing convention can be defined as follows:

def CC_TOY : CallingConv<[

CCIfType<[i8, 116], CCPromoteToType<i32>>,
CCIfType<[i32], CCAssignToReg<[RO, R1]>>,
CCIfType<[i32], CCAssignToStack<4, 4>>

1>;

The preceding declaration says three things, which are as follows:

e If the datatype of the arguments is i8 or i16, it will get promoted to i32
e The first two arguments will be stored in register ro and r1
o [f there are more arguments, they will be stored in Stack

We also define the callee-saved register since callee-saved registers are used to hold long-
lived values that should be preserved across calls.

def CC_Save : CalleeSavedRegs<(add R2, R3)>;

The 11vm-tablegen tool generates a TOYCallingConv.inc file after building the project,
which will be included in the Instruction Selection phase in the TOYISelLowering.cpp
file.

Defining the instruction set

Architectures have rich instruction sets to represent various operations supported by the
target machine. Typically, three things need to be defined in the target description file
when representing the instructions:

e operands
e the assembly string
e the instruction pattern

The specification contains a list of definitions or outputs, and a list of uses or inputs. There
can be different operand classes, such as the Register class, and the immediate and more
complex register+imm operands.

For example, we define register to register addition for our Toy machine as follows in
TOYInstrInfo.td:

def ADDrr : InstTOY<(outs GRRegs:$dst),

(ins GRRegs:$srcl, GRRegs:$src2),

"add $dst, $srci,z$src2",

[(set i32:%dst, (add i32:$src1l, 1i32:3$src2))]>;

In the above declaration, the ‘ins‘ has two registers $src1 and $src2 belonging to the
general purpose register class, which holds the two operands. The result of the operation
will be put into ‘outs‘, which is a $dst register belonging to the general purpose Register
class. The assembly string is “add $dst, $srci,z$src2“. The values of $src1, $src2 and
$dst will be determined at the time of register allocation. So, an assembly will be
generated for add between two registers, like this:

add ro, ro, ri

We saw above how a simple instruction can be represented using tablegen. Similar to the
add register to register instruction, a subtract register from a register
instruction can be defined. We leave it to the readers to try it out. A more detailed
representation of complex instructions can be examined from the ARM or X86
architecture specifications in the project code.

Implementing frame lowering

Frame lowering involves emitting function prologue and epilogue. The prologue happens
at the beginning of a function. It sets up the stack frame of the called function. The
epilogue happens last in a function, it restores the stack frame of the calling (parent)
function.

The “stack” serves several purposes in the execution of a program, as follows:

e Keeping track of return address, when calling a function
e Storage of local variables in the context of a function call
e Passing arguments from the caller to the callee.

Thus there are 2 main functions that need to be defined when implementing frame
lowering — emitPrologue() and emitEpilogue().

The emitPrologue() function can be defined as follows:

void TOYFrameLowering::emitPrologue(MachineFunction &MF) const {
const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
MachineBasicBlock &MBB = MF.front();
MachineBasicBlock: :iterator MBBI = MBB.begin();

uint64_t StackSize = computeStackSize(MF);
if (!StackSize) {
return;
}
unsigned StackReg = TOY::SP;
unsigned OffsetReg = materializeOffset(MF, MBB, MBBI,
(unsigned)StackSize);
if (OffsetReg) {
BuildMI(MBB, MBBI, dl, TII.get(TOY::SUBrr), StackReg)
.addReg(StackReg)
.addReg(OffsetReq)
.setMIFlag(MachineInstr: :FrameSetup);
} else {
BuildMI(MBB, MBBI, dl, TII.get(TOY::SUBri), StackReg)
.addReg(StackReg)
.addImm(StackSize)
.setMIFlag(MachineInstr: :FrameSetup);

}
3
The above function moves over Machine Basic Block. It calculates stack size for the
function, calculates offset for the stack size, and emits instructions to set up the frame with
a stack register.

Similarly, the emitEpilogue() function can be defined as follows:

void TOYFrameLowering::emitEpilogue(MachineFunction &MF,
MachineBasicBlock &MBB) const {
const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
MachineBasicBlock: :iterator MBBI = MBB.getLastNonDebugInstr();
DebugLoc dl1 = MBBI->getDebuglLoc();

uint64_t StackSize = computeStackSize(MF);
if (!StackSize) {
return;
}
unsigned StackReg = TOY::SP;
unsigned OffsetReg = materializeOffset(MF, MBB, MBBI,
(unsigned)StackSize);
if (OffsetReg) {
BuildMI(MBB, MBBI, dl, TII.get(TOY::ADDrr), StackReg)
.addReg(StackReg)
.addReg(0ffsetReq)
.setMIFlag(MachineInstr: :FrameSetup);
} else {
BuildMI(MBB, MBBI, dl, TII.get(TOY::ADDri), StackReg)
.addReg(StackReg)
.addImm(StackSize)
.setMIFlag(MachineInstr: :FrameSetup);

}
}

The preceding function also calculates stack size, over goes the machine basic block, and
sets up the function frame when returning from the function. Please note that the stack
here is descending.

The emitPrologue() function first computes the stack size to determine whether the
prologue is required at all. Then it adjusts the stack pointer by calculating the offset. For
the emitEpilogue(), it first checks whether the epilogue is required or not. Then it
restores the stack pointer to what it was at the beginning of the function.

For example, consider this input IR:

%p = alloca 132, align 4
store 132 2, 132* %p

%b = load 132* %p, align 4
%c = add nsw 132 %a, %b

The TOY assembly generated will look like this:

sub sp, sp, #4 ; prologue
movw rl, #2

str r1, [sp]

add ro, ro, #2

add sp, sp, #4 ; epilogue

Lowering instructions

In this chapter, we will see the implementation of 3 things — Function call calling
convention, Formal argument calling convention, and Return value calling convention. We
create a file TOyISelLowering.cpp, and implement Instructions Lowering in it.

First, let’s look at how a call calling convention can be implemented.

SDValue TOYTar-getLoweing::LowerCall(TargetLowering::CallLoweringInfo &CLI,
SmallVectorImpl<SDValue> &InVals)
const {
SelectionDAG &DAG = CLI.DAG;
SDLoc &Loc = CLI.DL,
SmallVectorImpl<ISD: :OutputArg> &Outs = CLI.Outs;
SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
SDvValue Chain = CLI.Chain;
SDValue Callee = CLI.Callee;
CallingConv::ID CallConv = CLI.CallConv;
const bool isVarArg = CLI.IsVarArg;

CLI.IsTailCall = false;

if (isvarArg) {
1lvm_unreachable("Unimplemented");

}

// Analyze operands of the call, assigning locations to each

// operand.

SmallVector<CCValAssign, 16> ArgLocs;

CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
*DAG.getContext());

CCInfo.AnalyzeCallOperands(Outs, CC_TOY);

// Get the size of the outgoing arguments stack space
// requirement.
const unsigned NumBytes = CCInfo.getNextStackOffset();

Chain = DAG.getCALLSEQ_START(Chain,
DAG.getIntPtrConstant(NumBytes, Loc, true),
Loc);

SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
SmallVector<SDValue, 8> MemOpChains;

// Walk the register/memloc assignments, inserting copies/loads.
for (unsigned i = 0, e = ArgLocs.size(); 1 !=e; ++1) {
CCvalAssign &VA = ArglLocs[i];
SDValue Arg = OutVals[i];

// We only handle fully promoted arguments.
assert(VA.getLocInfo() == CCValAssign::Full && "Unhandled loc
info");

if (VA.isRegLoc()) {
RegsToPass.push_back(std: :make_pair (VA.getLocReg(), Arg));
continue;

}

assert(VA.isMemLoc() &&
"Only support passing arguments through registers or
via the stack");

SDValue StackPtr = DAG.getRegister(TOY::SP, MVT::i32);
SDValue PtrOff = DAG.getIntPtrConstant(VA.getLocMemOffset(),
Loc);
Ptroff = DAG.getNode(ISD::ADD, Loc, MVT::i32, StackPtr,
Ptroff);
MemOpChains.push_back(DAG.getStore(Chain, Loc, Arg, PtroOff,
MachinePointerInfo(), false, false,
0));
}

// Emit all stores, make sure they occur before the call.
if (!MemOpChains.empty()) {
Chain = DAG.getNode(ISD::TokenFactor, Loc, MVT::0ther, MemOpChains);

}

// Build a sequence of copy-to-reg nodes chained together with

// token chain

// and flag operands which copy the outgoing args into the

// appropriate regs.

SbValue InFlag;

for (auto &Reg : RegsToPass) {
Chain = DAG.getCopyToReg(Chain, Loc, Reg.first, Reg.second, InFlag);
InFlag = Chain.getValue(1);

}

// We only support calling global addresses.
GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
assert(G && "We only support the calling of global address-es");

EVT PtrVT = getPointerTy(DAG.getDatalLayout());
Callee = DAG.getGlobalAddress(G->getGlobal(), Loc, PtrVT, 0);

std::vector<Sbvalue> 0ps;
Ops.push_back(Chain);
Ops.push_back(Callee);

// Add argument registers to the end of the list so that they
// are known live into the call.
for (auto &Reg : RegsToPass) {
Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType()));
}

// Add a register mask operand representing the call-preserved

// registers.

const uint32_t *Mask;

const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
Mask = TRI->getCallPreservedMask(DAG.getMachineFunction(), CallConv);

assert(Mask && '"Missing call preserved mask for calling
convention");
Ops.push_back(DAG.getRegisterMask(Mask));

if (InFlag.getNode()) {
Ops.push_back(InFlag);

}

SDVTList NodeTys = DAG.getVTList(MVT::0ther, MVT::Glue);

// Returns a chain and a flag for retval copy to use.
Chain = DAG.getNode(TOYISD::CALL, Loc, NodeTys, 0ps);
InFlag = Chain.getValue(1);

Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, Loc,

true),
DAG.getIntPtrConstant(®, Loc, true), InFlag,
Loc);
if (!Ins.empty()) {
InFlag = Chain.getValue(1);

}

// Handle result values, copying them out of physregs into vregs

// that we return.

return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins,
Loc, DAG, Invals);

}

In the above function, we first analyzed the operands of the call, assigned a location to
each operand, and calculated the size of the argument stack space. Then we scanned the
register/memloc assignment and inserted copies and loads. For our sample target, we
support passing arguments through registers or via stack (remember the calling convention
defined in the previous section). We then emit all the stores making sure they happen
before call. We build a sequence of copy-to-reg nodes that copy the outgoing arguments
into the appropriate registers. Then, we add a register mask operand representing the call-
preserved registers. We return a chain and a flag for return value copy to use and finally
handle result values, copying them out of physregs into vregs that we return.

We will now look at the implementation of a formal argument calling convention.

SDValue TOYTargetLowering::LowerFormalArguments(
SDvValue Chain, CallingConv::ID CallConv, bool isVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins, SDLoc dl, SelectionDAG &DAG,
SmallVectorImpl<SDValue> &InVals) const {
MachineFunction &MF = DAG.getMachineFunction();
MachineRegisterInfo &RegInfo = MF.getRegInfo();

assert(!isvVarArg && "VarArg not supported");

// Assign locations to all of the incoming arguments.

SmallVector<CCValAssign, 16> ArgLocs;

CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
*DAG.getContext());

CCInfo.AnalyzeFormalArguments(Ins, CC_TOY);

for (auto &VA : ArgLocs) {
if (VA.isRegLoc()) {
// Arguments passed in registers
EVT RegVT = VA.getLocVT();
assert(RegVT.getSimpleVT().SimpleTy == MVT::i32 &&
"Only support MVT::1i32 register passing");
const unsigned VReg =
RegInfo.createVirtualRegister (&TOY: :GRRegsRegClass);

RegInfo.addLiveIn(VA.getLocReg(), VReg);
SDValue ArgIn = DAG.getCopyFromReg(Chain, dl, VReg, RegVT);

Invals.push_back(ArgIn);
continue;

}

assert(VA.isMemLoc() &&
"Can only pass arguments as either registers or via the
stack");

const unsigned Offset = VA.getLocMemOffset();

const int FI = MF.getFrameInfo()->CreateFixedObject(4, Offset,
true);

EVT PtrTy = getPointerTy(DAG.getDatalLayout());

SDValue FIPtr = DAG.getFrameIndex(FI, PtrTy);

assert(VA.getvalvT() == MVT::132 &&
"Only support passing arguments as 132");
SDvValue Load = DAG.getLoad(VA.getVvalvT(), dl, Chain, FIPtr,
MachinePointerInfo(), false, false, false,
0);

InVals.push_back(Load);
}

return Chain;

}

In the above implementation of a formal argument calling convention, we assigned a
location to all the incoming arguments. We handle only the arguments passed via a register
or a stack. We will now look at the implementation of a return value calling convention.

bool TOYTargetLowering::CanLowerReturn(
CallingConv::ID CallConv, MachineFunction &MF, bool isVarArg,
const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context)
const {
SmallVector<CCValAssign, 16> RVLocCS;
CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
if (!CCInfo.CheckReturn(Outs, RetCC_TOY)) {
return false;
}
if (CCInfo.getNextStackOffset() '= 0 && isVarArg) {
return false;

}

return true;

}

Sbvalue
TOYTargetLowering: :LowerReturn(SDValue Chain, CallingConv::ID CallConv,
bool isVarArg, const SmallVec torImpl<ISD::OutputArg> & Outs, const
SmallVectorImpl<SDValue> const SmallVec torImpl<ISD::OutputArg> & Outs,
if (isvarArg) {
report_fatal_error("VarArg not supported");

}

// CCValAssign - represent the assignment of
// the return value to a location
SmallVector<CCValAssign, 16> RVLocCS;

// CCState - Info about the registers and stack slot.
CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
*DAG.getContext());

CCInfo.AnalyzeReturn(Outs, RetCC_TOY);

SDvalue Flag;
SmallVector<SDValue, 4> RetOps(1, Chain);

// Copy the result values into the output registers.

for (unsigned i = 0, e = RVLocs.size(); 1 < e; ++i) {
CCvalAssign &VA = RVLocs[1];
assert(VA.isRegLoc() && "Can only return in registers!");

Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), OutVals[i], Flag);

Flag = Chain.getVvalue(1);
RetOps.push_back(DAG.getRegister (VA.getLocReg(), VA.getLocVT()));

¥
RetOps[0] = Chain; // Update chain.

// Add the flag if we have it.
if (Flag.getNode()) {
RetOps.push_back(Flag);

}

return DAG.getNode(TOYISD::RET_FLAG, dl, MVT::Other, RetOps);
}
We first see if we can lower a return. We then gather information about registers and stack
slots. We copy the result values in the output registers and finally return a DAG node for a
return value.

Printing an instruction

Printing an assembly instruction is an important step in generating target code. Various
classes are defined that work as a gateway to the streamers.

First, we initialize the class for instruction, assigning the operands, the assembly string,
pattern, the output variable, and so on in the TOYInstrFormats.td file:

class InstTOY<dag outs, dag ins, string asmstr, list<dag> pattern>
Instruction {
field bits<32> Inst;
let Namespace = "TOY";
dag OutOperandList = outs;
dag InOperandList = ins;
let AsmString = asmstr;
let Pattern = pattern;
let Size = 4;
}

Then, we define functions to print operands in TOYInstPrinter.cpp.

void TOYInstPrinter::printOperand(const MCInst *MI, unsigned OpNo,
raw_ostream &0) {
const MCOperand &Op = MI->getOperand(OpNo);
if (Op.isReg()) {
printRegName(0, Op.getReg());
return;
}
if (Op.isImm()) {
0 << "#" << Op.getImm();
return;
}
assert(Op.isExpr() && "unknown operand kind in printOperand");
printExpr(Op.getExpr(), 0);
3

This function simply prints operands, registers, or immediate values, as the case may be.

We also define a function to print the register names in the same file:

void TOYInstPrinter::printRegName(raw_ostream &0S, unsigned RegNo) const
0S << StringRef(getRegisterName(RegNo)).lower();

}

Next, we define a function to print the instruction:

void TOYInstPrinter::printInst(const MCInst *MI, raw_ostream &O,
StringRef Annot) {
printInstruction(MI, 0);
printAnnotation(0, Annot);

}

Next, we declare and define assembly info as follows:

We create a TOYMCAsmInfo.h and declare an ASMInfo class:

#ifndef TOYTARGETASMINFO_H

#define TOYTARGETASMINFO_H

#include "1lvm/MC/MCAsmInfoELF.h"

namespace llvm {

class StringRef;

class Target;

class TOYMCAsmInfo : public MCAsmInfoELF {
virtual void anchor();

public:
explicit TOYMCAsmInfo(StringRef TT);
I
} // namespace llvm
#endif

The constructor can be defined in TOYMCAsmInfo.cpp as follows:

#include "TOYMCAsmInfo.h"

#include "1llvm/ADT/StringRef.h"

using namespace llvm;

void TOYMCAsmInfo::anchor() {}

TOYMCAsmInfo::TOYMCAsmInfo(StringRef TT) {
SupportsDebugInformation = true;

Datal6bitsDirective = "\t.short\t";
Data32bitsDirective = "\t.long\t";
Data64bitsDirective = 0;
ZeroDirective = "\t.space\t";
CommentString = "#";

AscizDirective = ".asciiz";

HiddenVisibilityAttr = MCSA_Invalid;
HiddenDeclarationVisibilityAttr = MCSA_Invalid;
ProtectedVisibilityAttr = MCSA_Invalid;

}

For compilation, we define LLVMBuild. txt as follows:

[component_0]

type = Library

name = TOYAsmPrinter

parent = TOY

required_libraries = MC Support
add_to_library_groups = TOY

Furthermore, we define the cMakeLists. txt file as follows:

add_1lvm_library(LLVMTOYAsmPrinter
TOYInstPrinter.cpp

)

When the final compilation takes place, the 11c tool—a static compiler—will generate the
assembly of the Toy architecture (after registering the TOY architecture with the 11c tool).

To register our TOY target with static compiler 11c, follow the steps mentioned below:

1. First, add the entry of the Toy backend to 11vm_root_dir/CMakeLists.txt:

set (LLVM_ALL_TARGETS
AArch64

ARM

TOY
)

. Then, add the toy entry to 11vm_root_dir/include/11lvm/ADT/Triple.h:

class Triple {

public:

enum ArchType {

UnknownArch,

arm, // ARM (little endian): arm, armv.*, xscale
armeb, // ARM (big endian): armeb

aarch64, // AArch64 (little endian): aarch64

toy // TOY: toy
i

. Add the toy entry to 11vm_root_dir/include/11lvm/ MC/MCExpr .h:

class MCSymbolRefExpr : public MCExpr {
public:
enum VariantKind {

VK_TOY_LO,

VK_TOY_HI,

Iy

. Add the toy entry to 11vm_root_dir/include/11lvm/ Support/ELF.h:

enum {
EM_NONE = 0, // No machine
EM_M32 = 1, // AT&T WE 32100

EM_TOY = 220 // whatever is the next number
+;

. Then, add the toy entry to 1ib/MC/MCExpr .cpp:

StringRef MCSymbolRefExpr::getVariantKindName(VariantKind
Kind) {
switch (Kind) {

case VK_TOY_LO: return "TOY_LO";
case VK_TOY_HI: return "TOY_HI";

}
}
. Next, add the toy entry to 1ib/Support/Triple.cpp:

const char *Triple::getArchTypeName(ArchType Kind) {
switch (Kind) {

case toy: return "toy";

}
const char *Triple::getArchTypePrefix(ArchType Kind) {

switch (Kind) {

case toy: return "toy";
}

}
Triple::ArchType Triple::getArchTypeForLLVMName(StringRef

Name) {

.Case("toy", toy)

5
static Triple::ArchType parseArch(StringRef ArchName) {

.Case("toy", Triple::toy)

b
static unsigned
getArchPointerBitWidth(llvm: :Triple::ArchType Arch) {

case llvm::Triple::toy:
return 32;

¥
Triple Triple::get32BitArchVariant() const {

case Triple::toy:
// Already 32-bit.
break;

}
Triple Triple::get64BitArchVariant() const {

case Triple::toy:
T.setArch(UnknownArch);
break;

7. Add the toy directory entry to 1ib/Target/LLVMBuild. txt:

[common]
subdirectories = ARM AArch64 CppBackend Hexagon MSP430
TOY

10.

11.

12.

Create a new file called ToY.h in the 1ib/Target/ToY folder:

#ifndef TARGET_TOY_H

#define TARGET_TOY_H

#include "MCTargetDesc/TOYMCTargetDesc.h"

#include "llvm/Target/TargetMachine.h"

namespace llvm {

class TargetMachine;

class TOYTargetMachine;

FunctionPass *createTOYISelDag(TOYTargetMachine &TM,
CodeGenOpt::Level OptLevel);

} // end namespace llvm;

#endif

Create a new folder called TargetInfo in the 1ib/Target/TOY folder. Inside that
folder, create a new file called ToyTargetInfo.cpp, as follows:

#include "TOY.h"

#include "llvm/IR/Module.h"

#include "llvm/Support/TargetRegistry.h"

using namespace 1llvm;

Target 1llvm::TheTOYTarget;

extern "C" void LLVMInitializeTOYTargetInfo() {
RegisterTarget<Triple::toy> X(TheTOYTarget, "toy", "TOY");

}

In the same folder, create the CMakeLists. txt file:

add_l1lvm_library(LLVMTOYInfo TOYTargetInfo.cpp)

Create an LLVMBuild. txt file:

[component_0]

type = Library

name = TOYInfo

parent = TOY
required_libraries = Support
add_to_library_groups = TOY

In the 1ib/Target/TOY folder, create a file called ToyTargetMachine.cpp:

#include "TOYTargetMachine.h"
#include "TOY.h"

#include "TOYFrameLowering.h"
#include "TOYInstrInfo.h"
#include "TOYISellLowering.h "
#include "TOYSelectionDAGInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/IR/Module.h"
#include "llvm/PassManager.h"
#include "llvm/Support/TargetRegistry.h"
using namespace llvm;

TOYTargetMachine: : TOYTargetMachine(const Target &T, StringRef TT,
StringRef CPU, StringRef FS, const

TargetOptions &Options, Reloc::Model RM, CodeModel::Model CM,
CodeGenOpt::Level OL)

13.

LLVMTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL),
Subtarget(TT, CPU, FS, *this) {
initAsmInfo();

}

namespace {
class TOYPassConfig : public TargetPassConfig {
public:
TOYPassConfig(TOYTargetMachine *TM, PassManagerBase &PM)
TargetPassConfig(TM, PM) {}
TOYTargetMachine &getTOYTargetMachine() const {
return getTM<TOYTargetMachine>();
}
virtual bool addPreISel();
virtual bool addInstSelector();
virtual bool addPreEmitPass();
Iy

} // namespace

TargetPassConfig *TOYTargetMachine: :createPassConfig
(PassManagerBase &PM) {
return new TOYPassConfig(this, PM);

}

bool TOYPassConfig::addPreISel() { return false; }

bool TOYPassConfig::addInstSelector() {
addPass(createTOYISelDag(getTOYTargetMachine(),
getOptLevel()));
return false;

}

bool TOYPassConfig::addPreEmitPass() { return false; }

// Force static initialization.

extern "C" void LLVMInitializeTOYTarget() {
RegisterTargetMachine<TOYTargetMachine> X(TheTOYTarget);

}

void TOYTargetMachine::addAnalysisPasses(PassManagerBase &PM) {}

Create a new folder called MCTargetDesc and a new file called TOYMCTargetDesc. h:

#ifndef TOYMCTARGETDESC_H
#define TOYMCTARGETDESC_H
#include "llvm/Support/DataTypes.h"
namespace llvm {

class Target;

class MCInstriInfo;

class MCRegisterInfo;
class MCSubtargetInfo;
class MCContext;

class MCCodeEmitter;
class MCAsmInfo;

class MCCodeGenInfo;
class MCInstPrinter;
class MCObjectWriter;

14.

class MCAsmBackend;

class StringRef;

class raw_ostream;

extern Target TheTOYTarget;

MCCodeEmitter *createTOYMCCodeEmitter(const MCInstrInfo &MCII, const
MCRegisterInfo &MRI, const MCSubtargetInfo &STI, MCContext &Ctx);

MCAsmBackend *createTOYAsmBackend(const Target &T, const MCRegisterInfo
&MRI, StringRef TT, StringRef CPU);

MCObjectWriter *createTOYELFObjectWriter(raw_ostream &0S, uint8_t
0SABI);

} // End 1llvm namespace

#define GET_REGINFO_ENUM

#include "TOYGenRegisterInfo.inc"

#define GET_INSTRINFO_ENUM

#include "TOYGenInstrInfo.inc"

#define GET_SUBTARGETINFO_ENUM

#include "TOYGenSubtargetInfo.inc"

#endif

Create one more file, called ToymMCTargetDesc.cpp, in the same folder:

#include "TOYMCTargetDesc.h"

#include "InstPrinter/TOYInstPrinter.h"
#include "TOYMCAsmInfo.h"

#include "1llvm/MC/MCCodeGenInfo.h"
#include "llvm/MC/MCInstrInfo.h"
#include "1llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/MC/MCStreamer.h"

#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/FormattedStream.h"
#include "llvm/Support/TargetRegistry.h"
#define GET_INSTRINFO_MC_DESC

#include "TOYGenInstrInfo.inc"

#define GET_SUBTARGETINFO_MC_DESC
#include "TOYGenSubtargetInfo.inc"
#define GET_REGINFO_MC_DESC

#include "TOYGenRegisterInfo.inc"

using namespace llvm;

static MCInstrInfo *createTOYMCInstrInfo() {
MCInstrInfo *X = new MCInstrInfo();
InitTOYMCInstrInfo(X);
return X;

}

static MCRegisterInfo *createTOYMCRegisterInfo(StringRef TT) {
MCRegisterInfo *X = new MCRegisterInfo();
InitTOYMCRegisterInfo(X, TOY::LR);
return X;

}

static MCSubtargetInfo *createTOYMCSubtargetInfo(StringRef TT,

StringRef CPU, StringRef FS) {
MCSubtargetInfo *X = new MCSubtargetInfo();
InitTOYMCSubtargetInfo(X, TT, CPU, FS);
return X;

}

static MCAsmInfo *createTOYMCAsmInfo(const MCRegisterInfo &MRI,
StringRef TT) {
MCAsmInfo *MAI = new TOYMCAsmInfo(TT);
return MAI,
}
static MCCodeGenInfo *createTOYMCCodeGenInfo(StringRef TT, Reloc::Model
RM, CodeModel::Model CM, CodeGenOpt::Level OL)
{
MCCodeGenInfo *X = new MCCodeGenInfo();
if (RM == Reloc::Default) {
RM = Reloc::Static;
}
if (CM == CodeModel: :Default) {
CM = CodeModel::Small;
}
if (CM !'= CodeModel::Small & & CM != CodeModel::Large) {
report_fatal_error("Target only supports CodeModel Small or
Large");
}
X->InitMCCodeGenInfo(RM, CM, OL);
return X;

}

static MCInstPrinter *
createTOYMCInstPrinter(const Target &T, unsigned SyntaxVariant,
const MCAsmInfo &MAI, const MCInstrInfo & MII,
const MCRegisterInfo &MRI, const MCSubtargetInfo &STI) {
return new TOYInstPrinter(MAI, MII, MRI);

}

static MCStreamer *
createMCAsmStreamer (MCContext &Ctx, formatted_raw_ostream &O0S,
bool isVerboseAsm, bool useDwarfDirectory,
MCInstPrinter *InstPrint, MCCodeEmitter *CE,
MCAsmBackend *TAB, bool ShowInst) {
return createAsmStreamer (Ctx, 0S, isVerboseAsm, useD - warfDirectory,
InstPrint, CE, TAB, ShowInst);

}

static MCStreamer *createMCStreamer(const Target &T, StringRef TT,
MCContext &Ctx, MCAsmBackend &MAB, raw_ostream &O0S,
MCCodeEmitter *Emitter, const MCSubtargetInfo &STI,
bool RelaxAll, bool NoExecStack) {

return createELFStreamer (Ctx, MAB, 0S, Emitter, false, NoExecStack);
}

// Force static initialization.
extern "C" void LLVMInitializeTOYTargetMC() {
// Register the MC asm info.
RegisterMCAsmInfoFn X(TheTOYTarget, createTOYMCAsmInfo);

15.

16.

// Register the MC codegen info.

TargetRegistry: :RegisterMCCodeGenInfo(TheTOYTarget,
createTOYMCCodeGenInfo);

// Register the MC instruction info.

TargetRegistry: :RegisterMCInstrInfo(TheTOYTarget,
createTOYMCInstrInfo);

// Register the MC register info.

TargetRegistry: :RegisterMCRegInfo(TheTOYTarget,
createTOYMCRegisterInfo);

// Register the MC subtarget info.

TargetRegistry: :RegisterMCSubtargetInfo(TheTOYTarget,

createTOYMCSub targetInfo);

// Register the MCInstPrinter

TargetRegistry::RegisterMCInstPrinter(TheTOYTarget,
createTOYMCInstPrinter);

// Register the ASM Backend.

TargetRegistry: :RegisterMCAsmBackend(TheTOYTarget,
createTOYAsmBackend);

// Register the assembly streamer.

TargetRegistry: :RegisterAsmStreamer (TheTOYTarget,
createMCAsmStreamer);

// Register the object streamer.

TargetRegistry::RegisterMCObjectStreamer (TheTOYTarget,
createMCStreamer);

// Register the MCCodeEmitter

TargetRegistry::RegisterMCCodeEmitter (TheTOYTarget,
createTOYMCCodeEmitter);

}

In the same folder, create an LLVMBuild. txt file:

[component_0]

type = Library

name = TOYDesc

parent = TOY

required_libraries = MC Support TOYAsmPrinter TOYInfo
add_to_library_groups = TOY

Create a CMakeLists.txt file:

add_llvm_library(LLVMTOYDesc
TOYMCTargetDesc.cpp)

Build the enitre LLVM project, as follows:

$ cmake 1llvm_src_dir -DCMAKE_BUILD_TYPE=Release -
DLLVM_TARGETS_TO_BUILD="TOY"
$ make

Here, we have specified that we are building the LLVM compiler for the
toy target. After the build completes, check whether the TOY target
appears with the llc command:

$ 1llc -version

Registered Targets
toy - TOY

The following IR, when given to the 11c tool, will generate an assembly as shown:

target datalayout = "e-m:e-p:32:32-11:8:32-18:8:32- 116:16:32-164:32-
f64:32-a:0:32-n32"
target triple = "toy"
define 132 @foo(i32 %a, 132 %b){
%c = add nsw 132 %a, %b
ret i32 %c

}

$ 1llc foo.1ll

.text

.file "foo.11l"
.globl foo

.type foo,@function
foo: # @foo

BB#0: # %entry

add ro, ro, ri

b 1r

.Ltmpo:

.size foo, .LtmpO-foo

To see the details of how to register a target with 11c, you can visit

http://llvm.org/docs/Writing Anl.I.VMBackend.html#target-registration and

http://jonathan2251.github.io/Ibd/llvmstructure.html#target-registration by Chen Chung-
Shu and Anoushe Jamshidi.

http://llvm.org/docs/WritingAnLLVMBackend.html#target-registration
http://jonathan2251.github.io/lbd/llvmstructure.html#target-registration

Summary

In this chapter, we had a brief discussion about how a target architecture machine can be
represented in LLVM. We saw the ease of using tablegen in organizing data such as
register sets, instruction sets, calling conventions, and so on, for a given target. The 11vm-
tablegen then converts these target descriptor . td fies into enums, which can be used in
program logic such as frame lowering, instruction selection, instruction printing, and so
on. More detailed and complex architectures like ARM and X86 can give insight on a
detailed description of the target.

In the first chapter, we tried a basic exercise to get hands-on with various tools provided
by the LLVM infrastructure. In the subsequent chapters, that is, Chapter 2, Building LLVM
IR, and Chapter 3, Advanced LLVM IR, we used APIs provided by LLVM to emit IRs.
Readers can use those APIs in their frontend to convert their language to LLVM IR. In
Chapter 5, Advanced IR Block Transformations, we got used to Pass Pipeline for IR
optimization and went through some examples. In Chapter 6, IR to Selection DAG Phase,
readers got familiar with the conversion of IR to selection DAG, which is a step towards
emitting machine code. In this final chapter, we saw how to represent sample architecture
with tablegen and use it for emitting code.

After reading this book, we hope that readers become familiar with LLVM infrastructure
and are ready to dive deeply into LLVM and create compilers on their own for their
custom architecture or a custom language. Happy Compiling!

Index
A

e address
o obtaining, of element / Getting the address of an element

basic block
o simple arithmetic statement, emitting in / Emitting a simple arithmetic statement
in a basic block
BasicBlockPass class / Pass and Pass Manager
Basic Register Allocator

o about / Register allocation

block
o adding, to function / Adding a block to a function
Bugpoint tool

o about / Modular design and collection of libraries

C

e code emission

o about / Code Emission
e collection of libraries

o about / Modular design and collection of libraries
e command line arguments, opt

o basicaa / LLVM tools and using them in the command line
da / LLVM tools and using them in the command line
instcount / LLVM tools and using them in the command line
loops / LLVM tools and using them in the command line
scalar evolution / LLVM tools and using them in the command line
constprop / LLVM tools and using them in the command line
globalopt / LLVM tools and using them in the command line
inline / LLVM tools and using them in the command line
instcombine / LLVM tools and using them in the command line
licm / LLVM tools and using them in the command line
tailcallelim / LLVM tools and using them in the command line

O 0O 0O O O O o o o o

E

e element
o address, obtaining of / Getting the address of an element

Fast Register Allocator

o about / Register allocation
flags, PassManager class
o time-passes / Pass and Pass Manager
o stats / Pass and Pass Manager
o instcount / Pass and Pass Manager
frame lowering

o implementing / Implementing frame lowering
function

o emitting, in Module / Emitting a function in a module

o block, adding to / Adding a block to a function
function arguments

o emitting / Emitting function arguments
FunctionPass class / Pass and Pass Manager

G

e Global Variable

o emitting / Emitting a global variable
e Greedy Register Allocator

o about / Register allocation

if-else condition IR
o emitting / Emitting if-else condition IR

instcombine module

o methods / Instruction Combining
instruction

o printing / Printing an instruction
instruction combining

o about / Instruction Combining
Instruction Selection

o about / Instruction Selection
instruction set

o defining / Defining the instruction set
instruction simplification example

o about / Instruction simplification example

o methods / Instruction simplification example
instructions lowering

o implementing / Lowering instructions
IR

o converting, to selectionDAG / Converting IR to selectionDAG

L

e Linkages
o about / Emitting a global variable

ExternalLinkage / Emitting a global variable
AvailableExternallyLinkage / Emitting a global variable

LinkOnceAnyLinkage / Emitting a global variable
LinkOnceODRLinkage / Emitting a global variable
WeakAnyLinkage / Emitting a global variable
WeakODRLinkage / Emitting a global variable

AppendingLinkage / Emitting a global variable
InternalLinkage / Emitting a global variable
PrivateLinkage / Emitting a global variable
ExternalWeakLinkage / Emitting a global variable
CommonLinkage / Emitting a global variable
llc / LLVM tools and using them in the command line
1li / LLVM tools and using them in the command line
llvm-as / LLVM tools and using them in the command line
llvm-dis / LLVM tools and using them in the command line
llvm-link / LLVM tools and using them in the command line
LLVM Bitcode file format
o reference link / LLVM tools and using them in the command line

e LLVM intrinsics

o about / LLVM intrinsics

o reference link / LLVM intrinsics
e LLVMIR

o about / Getting familiar with LLVM IR

o emitting, for loop / Emitting LLVM IR for loop
e LLVM Module

o creating / Creating an LLVM module
e LLVM tools
about / LLVM tools and using them in the command line
llvm-as / LLVM tools and using them in the command line
llvm-dis / LLVM tools and using them in the command line
llvm-link / LLVM tools and using them in the command line
1li / LLVM tools and using them in the command line
llc / LLVM tools and using them in the command line
opt / LLVM tools and using them in the command line
e Jocal variables

o register allocated local variables / Getting familiar with LLVM IR

o stack allocated local variables / Getting familiar with LLVM IR
e loop

o LLVM IR, emitting for / Emitting LLVM IR for loop
e Loop Interchange

O 0O 0O O 0O 0O o o o o o

O O O O O o o

o about / Loop processing
Loop Invariant Code Motion (LICM)

o about / Loop processing
LoopPass class / Pass and Pass Manager
loop processing

o about / Loop processing
Loop Rotation

o about / Loop processing
Loop Simplify Pass

o about / Loop processing
Loop Unswitch

o about / Loop processing
loop vectorization

o about / Vectorization

Machine Basic Block / Implementing frame lowering
Machine Instruction

o scheduling / Scheduling and emitting machine instructions

o emitting / Scheduling and emitting machine instructions
memory

o address, reading from / Reading from the memory
memory access operations / Memory access operations
memory location
o writing into / Writing into a memory location
methods, for filling information
o AnalysisUsage**addRequired<> method / AnalysisUsage::addRequired<>
method
o AnalysisUsage*addRequiredTransitive<> method /
AnalysisUsage:addRequiredTransitive<> method
o AnalysisUsage**addPreserved<> method / AnalysisUsage::addPreserved<>
method
methods, for instruction simplification

SimplifyBinOp / Instruction simplification example
SimplifyAddInst / Instruction simplification example
SimplifySublnst / Instruction simplification example

SimplifyAndInst / Instruction simplification example
methods, for simplification of instcombine module

o SimplifyAssociativeOrCommutative / Instruction Combining
o tryFactorization / Instruction Combining
modular design
o about / Modular design and collection of libraries
Module
o function, emitting in / Emitting a function in a module
ModulePass subclass
o about / Pass and Pass Manager

(e]

(e]

(e]

(e]

N

¢ natural loops
o about / Loop processing

O

e opt

o about / LLVM tools and using them in the command line

o command line arguments / LLVM tools and using them in the command line
e Optimizer

o about / Modular design and collection of libraries
e Opt tool

o about / Opt Tool

Pass class

o about / Pass and Pass Manager
o virtual methods / Pass and Pass Manager

passes
o reference link / Opt Tool
Pass info

o using, in own Pass / Using other Pass info in current Pass
Pass Manager class

o about / Pass and Pass Manager

o flags / Pass and Pass Manager
PBQP Register Allocator

o about / Register allocation
PHI instruction / Emitting if-else condition IR

register allocated local variables

o about / Getting familiar with LLVM IR
register allocation

o about / Register allocation
register allocation, for mapping virtual registers to physical registers
o Direct Mapping / Register allocation

o Indirect Mapping / Register allocation
register allocation techniques, LLVM

o Basic Register Allocator / Register allocation

o Fast Register Allocator / Register allocation

PBQP Register Allocator / Register allocation
o Greedy Register Allocator / Register allocation

registers

o defining / Defining registers and register sets
registers set

o defining / Defining registers and register sets
Return statement

o emitting / Emitting a return statement

(e]

sample backend

about / Sample backend
registers, defining / Defining registers and register sets

o registers sets, defining / Defining registers and register sets
o calling convention, defining / Defining the calling convention

scalar

o inserting, into vector / Inserting a scalar into a vector

o extracting, from vector / Extracting a scalar from a vector
scalar evolution

o about / Scalar evolution
SelectionDAG

o legalizing / Legalizing SelectionDAG
o optimizing / Optimizing SelectionDAG
selectionDAG

o IR, converting to / Converting IR to selectionDAG
simple arithmetic statement

o emitting, in basic block / Emitting a simple arithmetic statement in a basic block
Single-instruction multiple-data (SIMD)

o about / Vectorization
single instruction multiple data (SIMD) / Inserting a scalar into a vector
SLP Vectorization

o about / Vectorization
spilling

o about / Register allocation
stack allocated local variables

o about / Getting familiar with LLVM IR
static single assignment (SSA) / Getting familiar with LLVM IR
Superword-Level Parallelism (SLP)

o about / Vectorization

(¢]

(¢]

T

¢ tablegen tool
o about / Modular design and collection of libraries, Defining registers and

register sets

o reference link / Defining registers and register sets
e TargetTransformInfo (TTT)

o about / Vectorization

\Y

e vector

o scalar, inserting into / Inserting a scalar into a vector

o scalar, extracting from / Extracting a scalar from a vector
e vectorization

o about / Vectorization
e virtual methods, Pass class

o dolnitialization / Pass and Pass Manager

o runOn{Passtype} / Pass and Pass Manager
o doFinalization / Pass and Pass Manager

	LLVM Essentials
	Credits
	About the Authors
	About the Reviewer
	www.PacktPub.com
	Support files, eBooks, discount offers, and more
	Why subscribe?
	Free access for Packt account holders
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Errata
	Piracy
	Questions
	1. Playing with LLVM
	Modular design and collection of libraries
	Getting familiar with LLVM IR
	LLVM tools and using them in the command line
	Summary
	2. Building LLVM IR
	Creating an LLVM module
	Emitting a function in a module
	Adding a block to a function
	Emitting a global variable
	Emitting a return statement
	Emitting function arguments
	Emitting a simple arithmetic statement in a basic block
	Emitting if-else condition IR
	Emitting LLVM IR for loop
	Summary
	3. Advanced LLVM IR
	Memory access operations
	Getting the address of an element
	Reading from the memory
	Writing into a memory location
	Inserting a scalar into a vector
	Extracting a scalar from a vector
	Summary
	4. Basic IR Transformations
	Opt Tool
	Pass and Pass Manager
	Using other Pass info in current Pass
	AnalysisUsage::addRequired<> method
	AnalysisUsage:addRequiredTransitive<> method
	AnalysisUsage::addPreserved<> method
	Instruction simplification example
	Instruction Combining
	Summary
	5. Advanced IR Block Transformations
	Loop processing
	Scalar evolution
	LLVM intrinsics
	Vectorization
	Summary
	6. IR to Selection DAG phase
	Converting IR to selectionDAG
	Legalizing SelectionDAG
	Optimizing SelectionDAG
	Instruction Selection
	Scheduling and emitting machine instructions
	Register allocation
	Code Emission
	Summary
	7. Generating Code for Target Architecture
	Sample backend
	Defining registers and register sets
	Defining the calling convention
	Defining the instruction set
	Implementing frame lowering
	Lowering instructions
	Printing an instruction
	Summary
	Index

