
FragPicker: A New Defragmentation Tool
for Modern Storage Devices

Jonggyu Park and Young Ik Eom
Sungkyunkwan University

The 28th ACM Symposium on Operating Systems Principles

What is fragmentation?
a.k.a file fragmentation, filesystem fragmentation, and filesystem aging

Filesystem view

Storage view

Filesystem view

Storage view

Defragment!

Fragmentation, is the case closed?

Date

Th
e

nu
m

be
r o

f p
ub

lic
at

io
ns

0

10

20

30

40

50

60

70

80

90

1995 2000 2005 2010 2015 2020 2025

Fragmentation, is the case closed?
Let’s ask about it to the SSD vendors

Samsung: https://www.samsung.com/semiconductor/minisite/ssd/support/faqs-03/
Intel: https://www.intel.com/content/www/us/en/support/articles/000006110/memory-and-storage.html
SK Hynix: https://skhynix.freshdesk.com/support/solutions/folders/48000658601

For sure…?
They said sth different…

Fragmentation: the case is not closed yet!

C. Ji et. al. [1]
S. S. Hahn et. al. [2]

“Fragmentation matters
in mobile devices (flash).

I’ve seen it!”

A. Conway et. al. [3]
“Fragmentation significanly
degrades the performance of

Flash SSDs on major filesystems”

S. Kadekodi et. al. [4]
“Fragmentation really matters for even

Flash SSDs. We even made an aging tool!”

[1] An empirical study of file-system fragmentation in mobile storage systems, HotStorage 2016
[2] Improving file system performance of mobile storage systems using a decoupled defragmenter, ATC 2017
[3] File systems fated for senescence? nonsense, says science!, FAST 2017
[4] Geriatrix: Aging what you see and what you don’t see. A file system aging approach for modern storage systems, ATC 2018
[5] Filesystem aging: It’s more usage than fullness, HotStorage 2019

A. Conway et. al. [5]
“Fragmentaion occurs even

on clean SSDs”

Filesystem A
1 … A

2 … A
3 … A

4 … Request splitting!

But… the vendors said no moving parts….
Let’s follow the journey of I/Os

Check the sequentiality of LBA

Process

Userspace read(file A, 1-4)
Kernel

Block layer
bio bio bio bio

req req req req

• Creation
• Insertion
•Merging
• Sorting
• Staging
•Dispatching

Interface
SATA/UFS/eMMc/NVMe

cmdcmdcmdcmd

Storage Controller

Channel 1 Channel 2 Channel 3 Channel 4 • Command processing
•Data fetching (DMA)
• Etc.Channel conflict

Request splitting
1) Increases the number of I/Os
2) Makes I/Os smaller
2) Increases their randomness

Let’s verify this “scientifically”

Frag size

Frag distance

Filesystem

File

Read

request request

New terminology and metrics

Frag size: the size of each fragment that are
contiguous in terms of LBA
Frag distance: the distance between two
consecutive fragments

CC (Correlation Coefficient):
how related the value is to the performance
NLRS (Normalized Linear Regression Slope):
how significantly the value influences the
performance.

Let’s verify this “scientifically”
Evaluation Setup.
• 128KB O_DIRECT sequential read on F2FS
• Varying frag size/frag distance

* Request splitting occurs when frag size < 128KB

Observations
1. The performance of HDD is sensitive to both frag size

and distance (due to seek time)
2. Flash/Optane storage is sensitive to frag size

when it’s less than 128KB.
3. Flash/Optane storage is not sensitive to frag size

(>=128KB) and frag distance.

The performance of Flash/Optane storage, mostly
depends on the occurrence of request splitting and is
irrelevant to the distance between fragments.

Let’s revisit defragmentation tools
Conventional defragmentation tools migrates the entire contents of files

1. Filesystem-dependent (in-place update: ext4 and xfs, out-place update: f2fs and btrfs)
2. Significantly degrades the performance of co-running applications
3. The additional writes reduce the lifespan of modern storage devices.
4. Time-consuming

Defragment!

Let’s revisit defragmentation tools
Conventional defragmentation tools migrates the entire contents of files

1. Filesystem-dependent (in-place update: xfs and ext4, out-place update: f2fs and btrfs)
2. Time-consuming
3. Significantly degrades the performance of co-running applications
4. The additional writes will reduce the lifespan of modern storage devices.

Defragment!

FragPicker for modern storage devices

Fragmented

Defrag. Tools

Defragmented

Let’s ignore frag distance and do our best to prevent request splitting!

FragPicker

Defragmented

FragPicker for modern storage devices

Key Challenges

1. Which data to migrate?

2. How to migrate?

FragPicker for modern storage devices

Key Challenges

1. Which data to migrate?

2. How to migrate?

I/O Analysis to find the best pieces of data blocks to prevent request splitting

Filesystem-agnostic migration while minimizing the amount of writes

FragPicker for modern storage devices

v Analysis Phase
• Monitors system calls related I/Os
• Analyzes I/O characteristics per file
• Filters I/Os with hotness

v Migration Phase
• Checks the fragmentation state
• Allocates contiguous blocks
• Migrates fragmented data into a new space

Analysis
System Call
Monitoring

Hotness
Filtering

Per-file
Analysis

Frag.
Checking

Data
Migration

Block
Allocation

Migration
FragPicker

Fragmented Defragmented

The analysis phase of FragPicker

Kernel

Userspace

Process

system call

vfs_read(…)
Extracts necessary info. using BCC (BPF Compiler Collection)
1. Request type (Read/Write)
2. Inode number
3. I/O size
4. Start offset
5. O_DIRECT?

System Call
Monitoring

inode # size start_offset O_DIRECT?
R 10 130000 0 0
R 10 131072 131072 0
R 10 131072 262144 0

...

Type

The analysis phase of FragPicker

Kernel

Userspace

Process

system call

vfs_read(…)

System Call
Monitoring

...

Per-file
Analysis

start_offset countend_offset
0 131071 100

131072 262143 3
262144 393215 64

inode # size start_offset O_DIRECT?
R 10 130000 0 0
R 10 131072 131072 0
R 10 131072 262144 0

...
File Range List

Type

1. Creates per-file range list (start offset, end offset, and count)
2. Adjusts file range to be aligned with filesystem blocks
3. Applies readahead module
4. Merges overlapped I/Os and calculates the I/O counts per range

Read 1-40
count =1

Read 31-60
count =1

without merge

The analysis phase of FragPicker

Kernel

Userspace

Process

system call

vfs_read(…)

System Call
Monitoring

...

Per-file
Analysis

start_offset countend_offset
0 131071 100

131072 262143 3
262144 393215 64

inode # size start_offset O_DIRECT?
R 10 130000 0 0
R 10 131072 131072 0
R 10 131072 262144 0

...
File Range List

Type

1. Creates per-file range list (start offset, end offset, and count)
2. Adjusts file range to be aligned with filesystem blocks
3. Applies readahead module
4. Merges overlapped I/Os and calculates the I/O counts per range

Read 1-40
count =1

Read 31-60
count =1

merge

Read 1-60, count =2

The analysis phase of FragPicker

Kernel

Userspace

Process

system call

vfs_read(…)

Hotness
Filtering

start_offset countend_offset
0 131071 100

262144 393215 64
393216 524287 62

...

File Range List

System Call
Monitoring

...

Per-file
Analysis

start_offset countend_offset
0 131071 100

131072 262143 3
262144 393215 64

inode # size start_offset O_DIRECT?
R 10 130000 0 0
R 10 131072 131072 0
R 10 131072 262144 0

...
File Range List

Type

Truncates the file range lists
according to the hotness threshold

The migration phase of FragPicker

Filesystem

File

Chunk 4Chunk 1 Chunk 3Chunk 2start_offset countend_offset
0 131071 100

262144 393215 64
393216 524287 62

File range lists

Chunk 1
Chunk 3
Chunk 4

The migration phase of FragPicker

Filesystem

File

Chunk 4Chunk 1 Chunk 3Chunk 2start_offset countend_offset
0 131071 100

262144 393215 64
393216 524287 62

File range lists

Chunk 1
Chunk 3
Chunk 4

Need migration Keep Need migration1. Fragmentation
Checking

using “filefrag”

The migration phase of FragPicker

Filesystem

File

Chunk 4Chunk 1 Chunk 3Chunk 2start_offset countend_offset
0 131071 100

262144 393215 64
393216 524287 62

File range lists

Chunk 1
Chunk 3
Chunk 4

Need migration Keep Need migration1. Fragmentation
Checking

2. Block Allocation
Using fallocate()

In the case of out-place update filesystems,
FragPicker can skip this process

Migrate
Alloc

Dealloc

In-memory

The migration phase of FragPicker

Filesystem

File

Chunk 4Chunk 1 Chunk 3Chunk 2start_offset countend_offset
0 131071 100

262144 393215 64
393216 524287 62

File range lists

Chunk 1
Chunk 3
Chunk 4

Need migration Keep Need migration1. Fragmentation
Checking

2. Block Allocation

3. Data Migration

After defragmentation

Not performance
critical data

Evaluation

Objectives
1. Does FragPicker reduce the amount of writes for defragmentation?
2. Does FragPicker achieve a similar level of performance gain,

compared with conventional tools?

Storage
1. Samsung SATA Flash SSD 850 PRO 256GB
2. Intel NVMe Optane SSD 905P 960GB

Workloads
1. Sequential read/update
2. Stride read/update

Evaluation (Flash SSD)

1) Write amount
FragPicker reduces the amount of writes by around 50% (sequential) and 75% (stride)

2) Performance
FragPicker improves sequential/stride I/O by around 30% and 42%, respectively
Regarding stride read performance, FragPicker outperforms conventional ones by 15%

Ext4 F2FS Btrfs

Th
ro

ug
hp

ut
 (M

B/
s)

0

100

200

300

400

500

Original FragPicker-B FragPicker Conv.

Sequential read Stride read
Sequential update Stride update

Sequential - 206.192 MB 206.192 MB 411.604 MB
Stride - 206.392 MB 111.732 MB 412.712 MB

(The amount of writes)

Th
ro

ug
hp

ut
 (M

B/
s)

0

100

200

300

400

500

Original FragPicker-B FragPicker Conv.

Sequential read Stride read
Sequential update Stride update

Sequential - 205.204 MB 205.204 MB 423.62 MB
Stride - 205.204 MB 110.74 MB 423.548 MB

(The amount of writes)

Th
ro

ug
hp

ut
 (M

B/
s)

0

100

200

300

400

500

Original FragPicker-B FragPicker Conv. Conv.-T

Sequential read Stride read
Sequential update Stride update

Sequential - 205.332 MB 205.172 MB 425.512 MB 220.696 MB
Stride - 205.348 MB 110.564 MB 422.088 MB 204.924 MB

(The amount of writes)

Evaluation (Optane SSD)

1) Write amount
FragPicker reduces the amount of writes by around 50% (sequential) and 75% (stride)

2) Performance
FragPicker improves sequential/stride I/O by around 75% and 120%, respectively
* High performance devices suffer from kernel overheads

Ext4 F2FS Btrfs

0

500

1000

1500

2000

2500

Original FragPicker-B FragPicker Conv.

Sequential read Stride read
Sequential update Stride update

Sequential - 531.192 MB 530.868 MB 1055 MB
Stride - 531.220 MB 286.140 MB 1057 MB

Th
ro

ug
hp

ut
 (M

B/
s)

(The amount of writes)

Th
ro

ug
hp

ut
 (M

B/
s)

0

500

1000

1500

2000

2500

Original FragPicker-B FragPicker Conv.

Sequential read Stride read
Sequential update Stride update

Sequential - 525.32 MB 525.32 MB 1084 MB
Stride - 525.32 MB 283.4 MB 1084 MB

(The amount of writes)
Sequential - 569.155 MB 525.044 MB 1089 MB 573.476 MB
Stride - 569.24 MB 282.868 MB 1048 MB 573.476 MB

Th
ro

ug
hp

ut
 (M

B/
s)

0

500

1000

1500

2000

2500

Original FragPicker-B FragPicker Defragment Conv.-T

Sequential read Stride read
Sequential update Stride update

Conv.
(The amount of writes)

Evaluation (Optane SSD)
Evaluation Setup
•Pre-aged ext4 on Optane 905P SSD
•RocksDB ycsb-C (100% read, zipfian)

Evaluation Results

e4defrag FragPicker

Elapsed Time (sec.) 331 54

Perf. Interference 47% 7.4% (1.4%)

Perf. After (MB/s) 483.5 467.3

Write Amount 23GB 7.2GB

0
100
200
300
400
500
600

0 100 200 300 400 500 600 700 800 900
Elapsed Time (Sec)

Th
ro

ug
hp

ut
 (M

B/
s) Analysis phase Migration phase starts

e4defrag starts
FragPicker
e4defrag

More experiments in our paper!

• Database workloads
• SQLite

• Fileserver workloads
• Hotness filtering test
• ...

Discussion

• SSDs are diverse
• Each SSD has different FTL implementations espeically depending on the

venders
• Prefetching policy?
• Mapping policy?

• What’s the best data placement to exploit maximum performance?

Conclusion

• FragPicker
• A new defragmentation tool for modern storage devices
• No kernel modification
• Filesystem agnostic

• Requirements for FragPicker
• eBPF support
• Filesystem-level consistency
• fallocate and filefrag
• Filesystem support for providing a contiguous LBA region for a single write op.

Thank you
Source code: https://github.com/jonggyup/FragPicker

Contact: jonggyu@skku.edu

The 28th ACM Symposium on Operating Systems Principles

