s A Lightweight and Fine-grained File System
Sandboxing Framework

Ashish Bijlani Umakishore Ramachandran
Georgia Institute of Technology Georgia Institute of Technology
Atlanta, GA Atlanta, GA
ashish.bijlani@gatech.edu rama@cc.gatech.edu

ABSTRACT

File system sandboxing is a useful technique for protecting
sensitive data from untrusted binaries. However, existing
approaches do not allow fine-grained control over policy en-
forcement, require superuser privileges, or incur high perfor-
mance overhead. This paper proposes SANDFS, a lightweight
and fine-grained file system sandboxing framework for un-
privileged users and applications. We have designed SANDFS
as a stackable in-kernel file system that can be safely be
extended at runtime from the user-space to enforce custom
security policies in the kernel and offer near-native perfor-
mance. With SANDFS, multiple sandboxing layers could be
stacked on top of each other, with each higher layer further
enforcing its own policies to provide a restricted view of the
lower. Our evaluation of SANDFS with real-world workload
shows that it imposes less than 10% performance overhead.

CCS CONCEPTS

« Security and privacy — File system security;

KEYWORDS
Security, Sandboxing, File System

ACM Reference Format:

Ashish Bijlani and Umakishore Ramachandran. 2018. A Lightweight
and Fine-grained File System Sandboxing Framework. In APSys ’18:
9th Asia-Pacific Workshop on Systems (APSys ’18), August 27-28, 2018,
Jeju Island, Republic of Korea. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3265723.3265734

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

APSys ’18, August 27-28, 2018, Jeju Island, Republic of Korea

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-6006-7/18/08...$15.00
https://doi.org/10.1145/3265723.3265734

1 INTRODUCTION

File system sandboxing is a useful technique for enforcing se-
curity policies following the principal of least privilege, and
restricting access to sensitive data from untrusted program
execution. Discretionary Access Control (DAC) policies of-
fered by mainstream operating systems allow users to specify
permissions on files and directories, which are enforced by
the kernel to allow or deny access based on the identifier
of the requesting user. While DAC policies can protect the
confidentiality and integrity of the data belonging to one
user from other potentially malicious users on the system,
they are inadequate to provide a sandboxed environment
against untrusted binaries. An executable launched inherits
all the permissions of the user, and, therefore, can freely
access user's private data.

Applications often rely on third-party binaries to extend
their functionality. For instance, web browsers allow users to
install third-party extensions [4]. Mobile applications mone-
tize by including third-party advertisement libraries [2, 7].
However, DAC policies fail to protect the private data files
from buggy or malicious third-party binaries that share the
execution environment with the host application (i.e., are
executed under the same user identifier).

Alternative mechanisms, such as Mandatory Access Con-
trol (MAC) policies and Capabilities are often employed to
achieve a fine-grained sandboxing of the host file system
against untrusted binaries. For example, the Linux Security
Module (LSM) framework provides hooks to perform rule-
based MAC checks by invoking registered callback handlers
from security kernel modules, such as SELinux during file
system operations. However, they require superuser privi-
leges, and, thus are only meant for system administrators.
Additionally, leveraging such mechanisms to sandbox bina-
ries require careful and detailed analysis of their execution
and corresponding tuning of rules so as to not unnecessarily
restrict functionality.

Consequently, System Call Interposition (SCI) is a com-
monly used technique for sandboxing untrusted applica-
tions by monitoring the system calls and mediating access to
kernel resources [10]. However, SCI suffers from a number
of limitations. First, SCI-based tools mostly employ ptrace

https://doi.org/10.1145/3265723.3265734
https://doi.org/10.1145/3265723.3265734
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3265723.3265734&domain=pdf&date_stamp=2018-08-27

APSys 18, August 27-28, 2018, Jeju Island, Republic of Korea

$ sandfs -s sandfs.o -d /home/user /bin/bash
Figure 1: Example usage of SANDFS to sandbox user's home
directory. sandfs.o bytecode file represent runtime kernel
extensions to enforce custom security checks.

framework to intercept system calls in the user-space and
inspect user-supplied arguments at runtime [10, 11, 13, 15,
18]. However, ptrace imposes a high runtime performance
overhead, rendering such tools impractical. Second, SCI-
based sandboxing techniques are vulnerable to TOCTTOU
attacks [8] due to non-atomic security policy enforcement,
even with no possibility of path manipulation in user sup-
plied arguments [1]. Finally, not all file system requests are
performed using system calls. For example, mmap I/O does not
result in system calls. Hence, SCI-based sandboxing cannot
provide fine-grained control over enforcing access policies.

Our Solution. In this paper, we present SANDFS, a light-
weight file system sandboxing framework for UNIX-like com-
modity operating systems to overcome the limitations of
existing SCI-based sandboxing techniques. It is designed for
unprivileged users and applications to limit the attack surface
resulting from security bugs or malicious untrusted binaries.
SANDFS framework offers the following advantages:

e Fine-grained access control over kernel objects,
e Low performance overhead,

o High-level language support for defining checks,
o Stackable (layered) protection, and

e Runtime dynamic (programmatic) enforcement.

Applications of SANDFS. Users can mount SANDFS on
the host file system to restrict access to sensitive data (e.g.,
private keys) in their workspace when executing untrusted
applications. For example, machine learning models can be
evaluated without inspecting the code for malicious file sys-
tem behavior. Figure 1 shows its usage. Applications can fur-
ther stack SANDFS to protect against untrusted third-party
helper binaries (e.g., browser extensions).

Overview. We have designed SANDFS as an extensible
in-kernel file system framework. That is, the user-space can
safely extend its functionality at runtime by inserting cus-
tom security checks (called extensions) in the kernel that are
performed on the requests issued by the upper file system
(e.g., VFS). Being a file system, SANDFS complements existing
MAC-based sandboxing mechanisms (e.g., SELinux).

SANDFS consists of three core components: 1) a stackable
file system kernel driver that exports low-level file system
APIs to applications, 2) a user-space helper library that allows
applications to define custom security checks using a subset
of C-language, and 3) an in-kernel virtual machine runtime
that safely executes the checks in the kernel at runtime to
offer access protection at near-native performance. Security
functionality is extensible through familiar file system inter-
faces, which export a set of abstractions (e.g., dentry) and
APIs (e.g., lookup, open, etc.) to applications. Applications

Ashish Bijlani and Umakishore Ramachandran

can register a callback for some or all of the file system APIs
as necessary to achieve the desired security functionality.
Contributions. In this paper, we:
e propose a light-weight and fine-grained file system
sandboxing framework for unprivileged users,
e present the design and architecture of SANDFS and its
usage model, and
e evaluate the performance of SANDFS with real-world
workload to demonstrate its practicality.

2 RELATED WORK

In this section, we summarize approaches adopted by past
works that focused on creating a secure file system environ-
ment for untrusted binaries and compare them with ours.

Isolation. A number of tools and techniques have been
proposed [3, 11, 17] that leverage mechanisms, such as chroot,
namespaces, and virtualization to create an isolated file sys-
tem environment for untrusted applications. In contrast,
SANDFS does not create an isolated file system, but enforces
checks that restrict access from untrusted executables to
shared files within the same file system environment. As
such, SANDFS can complement existing isolation techniques
to further add a layer of protection.

Sandboxing. A few tools have explored System Call Inter-
position technique to build a file system sandboxing layer [9-
11, 13, 15, 18]. These tools rely on ptrace to intercept system
calls in the user-space and inspect their arguments for run-
time access policy enforcement. However, not only ptrace
incurs high performance overhead [15], but interposing at
runtime in user-space is also vulnerable to TOCTTOU at-
tacks [8]. Furthermore, not all file system requests are per-
formed using system calls. For instance, mmap I/O does not
result in system calls. Therefore, SCI-based sandbox fails to
provide support for fine-grained access policy enforcement.

SCI-based tools also require careful replication of kernel
file system state in user-space [15]. For example, by inter-
posing on system calls, one can only filter read) /write()
requests based on file descriptors. Therefore, file descriptor
to path mappings have to be maintained in the user-space
as well, which may lead to further synchronization issues
and race conditions. SANDFS, on the other hand, does not
inspect user-supplied arguments to system calls; instead, it
is designed as a stackable kernel file system layer in to ap-
ply security checks directly on low-level kernel abstractions
(e.g., dentry) atomically, thereby avoiding TOCTTOU risks
or replicating file system state.

Seccomp-bpf framework lets applications define and in-
stall their system call filtering (allow or deny) rules at run-
time, but requires hand-coded BPF filter assembly programs.
However, the filters cannot be removed once installed. SANDFS
provides a user-space helper library that exports a familiar

A Lightweight and Fine-grained File System Sandboxing FrameMRSiys *18, August 27-28, 2018, Jeju Island, Republic of Korea

Dynamic Unprivileged Fine-grained Performance
Technology P}(I)Iicies pUsersg Coitrol Overhead
chroot X X X -
LD_PRELOAD v v X Low
Ptrace v v x High
SELinux X X v Low
Seccomp v v x -
Namespaces X v x -
FUSE [19] v v v High
SANDFS v v v Low

Table 1: Existing file system sandboxing approaches.

file system interface and allows custom security checks to be
written in a subset of C language constructs, thereby making
it easy for developers to write portable checks, compared to
system calls that are specific to a particular architecture.

An important point to note here is that seccomp-bpf can
only filter system calls based on their type and raw argu-
ments; it cannot inspect user-supplied arguments (e.g., mem-
ory contents of path argument in open() system call). There-
fore, applications cannot rely on seccomp-bpf alone to en-
force custom access policies. MBox [15] utilizes seccomp-bpf
framework only as an auxiliary tool to reduce ptrace over-
head by filtering out unnecessary system calls and inter-
posing only on the few relevant ones (e.g., open(), readQ),
etc.). pledge [6] on OpenBSD, similar to seccomp-bpf, allows
applications to also filter out multiple predefined set of sys-
tem calls. Working at the system call level, both pledge and
seccomp-bpf suffer from TOCTTOU races.

Capsicum [21] addresses the limitations of seccomp-bpf
and pledge frameworks by allowing applications to enforce
access policies on individual system resources (e.g., file de-
scriptors) as opposed to system calls. However, it requires
modifying applications. In contrast, being a file system, SANDFS
is transparent to applications. As with Capsicum, developers
can further compartmentalize their applications to enable
fine-grained sandboxing with SANDFS where each compart-
ment acts as an independent sandbox §5.2.

Capabilities [5] and Mandatory Access Control (MAC)
policies, such as SELinux and AppArmor are built into com-
modity operating systems and are often employed to achieve
a fine-grained sandboxing of the host file system against un-
trusted binaries. However, they require admin privileges. As
SANDFS has been designed as a lightweight file system sand-
boxing framework for unprivileged users and applications, it
complements existing MAC-based sandboxing mechanisms.

LD_PRELOAD facility could be used by applications as a
lightweight technique to intercept file system requests in
user-space by overloading C library function calls (e.g., read,
write) and enforce custom checks [14]. However, malicious
executables could bypass C library functions and attempt to
make direct raw system calls to the kernel.

User-space File Systems. FUSE [19]-based security user
file systems also export a low-level file system interface for

fine-grained control over resources and allow applications
to define their custom policies. However, FUSE framework
incurs a high performance overhead [20].

3 DESIGN AND ARCHITECTURE

3.1 Threat Model

Under the UNIX DAC policies, applications launched by
a user inherit their access permissions, and therefore, are
granted full access to all the files owned by the user (ambient
authority). As such, the DAC model fails to protect the private
data of the user against buggy and malicious applications.

Modern applications, such as web browsers that large and
complex typically rely on third-party helper binaries (e.g.,
extensions) to extend their functionality. However, malicious
third-party binaries can exploit ambient authority of the host
application to steal sensitive data.

SANDFS is a file system sandboxing framework for unpriv-
ileged users and applications on UNIX-like systems to limit
the attack surface resulting from security bugs or potentially
malicious untrusted binaries.

3.2 Goals

We have built SANDFS to overcome the limitations of existing
SCI-based sandboxing tools. Specifically, we identify the
following operative goals.

Fine-grained access policy enforcement. SANDFS must
allow users to enforce custom security access policies in a
fine-grained manner by mediating all file accesses.

Stackable sandboxing layers. SANDFS framework must
allow multiple sandboxing layers to be stacked on top of each
other, with each layer enforcing its own security policies.

Avoid TOCTTOU risks and OS state replication. Unlike
existing SCI-based sandboxing tools, SANDFS must avoid
common pitfalls that lead to TOCTTOU races or replication
of file system state in the user-space.

Low Performance Overhead. Finally, SANDFS must incur
low performance overhead for the developers to adopt it.

3.3 Challenges and Mechanisms

To achieve the aforementioned goals, SANDFS has been de-
signed as an extensible kernel file system framework. It
presents itself as a file system to the user-space, which when
mounted on top of the host file system can transparently
intercept and mediate all low-level file system requests from
applications to the host file system. Its functionality can be
safely extended at runtime from the user-space by inserting
security checks (extensions) in the kernel to enforce custom
access policies on the intercepted file system requests. While
this design allows the user-space to perform fine-grained

APSys 18, August 27-28, 2018, Jeju Island, Republic of Korea

checks directly on low-level file system abstractions (e.g.,
dentry), it raises a number of challenges.

Safety. SANDFS functionality of the kernel at runtime to
be able to perform custom security checks. extensions must
not be able to access arbitrary memory addresses or leak
pointer values to the user-space. SANDFS relies on eBPF ex-
tension framework to offer the necessary safety guarantees
by restricting extensions to only a few well-defined helper
functions in the kernel §3.5.

Isolation. Since malicious third-party binaries in applica-
tions may exploit their ambient authority to corrupt or ma-
nipulate the sandboxing data structure, SANDFS only allows
the owner (main) thread to create/modify the data struc-
tures. To further reduce the attack surface, SANDFS leverages
namespaces to limit the sandboxed view of the file system to
only the owner process and its children.

3.4 Architecture

Figure 2 depicts the architecture of SANDFS. It consists of
three core components: kernel driver, in-kernel Virtual Ma-
chine (VM) runtime, and a helper library. The driver registers
itself as a file system to interface with the VFS operations
and acts as thin stackable interposition layer. That is, when
mounted on a host (lower) file system, it neither performs
any I/O nor does it implement any new functionality of its
own; it directly forwards all requests issued by the upper file
system (e.g., VFS) to the lower file system.

The VM allows unprivileged users and applications to
safely extend the functionality of the driver at runtime by
integrating their custom security checks (extensions) directly
into the file system stack in the kernel virtual address space.
As aresult, unlike existing SCI-based approaches that inspect
user-supplied input arguments, SANDFS works with actual
low-level kernel objects (e.g., dentry) and is not vulnerable
to TOCTTOU risks [8].

The library provides a familiar set of file system APIs and
abstractions on UNIX-based systems. The user-space can
register callbacks for some or all of the APIs to implement
security checks in a subset of C language. The checks are
complied into VM bytecode, loaded into the kernel as exten-
sions, and safely executed by the driver closer to the lower
file system using the VM runtime.

3.5 eBPF

We use eBPF [12] framework as the in-kernel VM runtime en-
vironment to achieve the safety guarantees. The reasons are
many-fold. Extended Berkeley Packet Filters (eBPF) frame-
work is an extension of classic BPF [16], a pseudo machine
architecture for packet filtering. eBPF enhances classic BPF
by including 64-bit support and richer programming con-
structs such as call, load, store, and conditional jumps.

Ashish Bijlani and Umakishore Ramachandran

High-level language support. eBPF enables code to be
written in a subset of C language for much larger expres-
siveness while still being safe and small. We tap into this
feature of eBPF to export a familiar file system interface to
the user-space for implementation of security checks in a
high-level language. The C code is then compiled into BPF
bytecode using clang compiler and loaded into the kernel.

Runtime Safety. eBPF provides safe bytecode execution
environment. The inserted code is statically verified by check-
ing for infinite loops and illegal memory references. Al-
though BPF bytecode is loaded into the kernel, it is prohibited
from accessing arbitrary kernel memory regions; instead, the
framework expects a whitelist of kernel helper functions. For
instance, standard helper function bpf_get_current_uid_gid
allows the bytecode to retrieve the user and group identifiers
of the current process.

eBPF is a generic runtime kernel extension framework.
Nevertheless, it is currently only used by the networking
and system profiling subsystems. To adopt it for SANDFS,
we added a set of kernel helper functions to assist in stack-
ing security functionality. Specifically, we added support for
sandfs_bpf_read and sandfs_bpf_write that allows SANDFS
extensions to read and modify parameters passed by the dri-
ver, respectively (e.g., path and mode parameters in sandfs_open
API). The safety guarantees provided by the eBPF framework
enables SANDFS to be used by unprivileged users and un-
trusted applications without exposing a large attack surface.
The verified code can further provide native performance
through JIT compilation.
Maps. eBPF framework allows user-space to create opaque
key-value data structures called maps for bookkeeping, as
needed. Maps are created using bpf_map_create system call.
Once created, user-space can operate on them using file
descriptors. The framework provides system call APIs to
lookup, update, and delete map entries. Maps are also acces-
sible to the eBPF bytecode in the kernel, and thus provide a
channel between the user-space and bytecode to share exe-
cution state or data. Since map entries can be arbitrary data
blobs, it is up to the user-space and the eBPF bytecode to
define their data types.

3.6 SANDFS APIs and abstractions

SANDFS library provides a set of APIs and abstractions to
the developers for easy implementation of their security
extensions, hiding the complex details. Table 2 lists the APIs
in detail. sandfs_ops interface exports all Virtual File System
(VES) APIs, (e.g., lookup for path to inode mapping) to offer
fine-grained access control over kernel abstractions (e.g.,
dentry). Furthermore, many file system operations in APIs
are optional. For example, callbacks for data I/O APIs (e.g.,

A Lightweight and Fine-grained File System Sandboxing FrameMRSiys *18, August 27-28, 2018, Jeju Island, Republic of Korea

Interface API(s) Description

VFS sandfs_ops FS Ops (e.g., lookup, open, read, etc.)
eBPF Map CRUD Hosts arbitrary data blobs.

Table 2: APIs and abstractions provided by SANDFS. It pro-
vides a high-level file system interface for easy adoption.
CRUD (create, read, update, and delete) APIs are offered for
map data structures to operate on Key/Value pairs.

read/write) can be empty if checks have been performed in
meta-data APIs (e.g., open).

To be able to configure kernel extensions and deploy new
or modify existing access policies at runtime from the user-
space, SANDEFS library provides a eBPF HashMap data struc-
ture that is capable of hosting arbitrary key/value blobs.
However, since SANDFS targets unprivileged users and ap-
plications, the hashmap is only accessible to the thread that
created it, typically the thread that mounts SANDFS. This
design disables arbitrary accesses to the map and protects it
from malicious binaries that may attempt to disable checks
or corrupt its state. SANDFS library further abstracts low-
level details of HashMap and provides high-level CRUD APIs to

create, read, update, and delete entries.
Sandboxed Application(s)

Untrusted
Enforce Binaries
SandFS Policies SandFS
Library Daemon
eBPF File System
Sysecalls o calls User
Dynamic Kernel
Access SandFS eBPF | VFS |
Policies
l:': o lookup() o 10 o I
H: IL"()I :,' SandFS Kernel Driver (stackable) |
SandFs close() 0 e
eBPF Map °

| Host File system (e.g., Extd4) |

Figure 2: Overview of SANDFS framework. The components
introduced have been highlighted in grey.

3.7 Workflow

To understand how SANDFS provides a sandboxing file sys-
tem layer, we describe its workflow in detail below.

Before mounting SANDFS, the user-space must load the
eBPF program containing the security extensions into the
kernel and register them with the SANDFS driver @ . This is
achieved by performing bpf_load_prog system call, which
invokes eBPF verifier in the kernel to check the integrity
of the extensions. If the verification fails, the extensions
are discarded and the user-space is notified of the errors. If
the verification step succeeds and the JIT engine is enabled,
the handlers are processed by the JIT compiler to generate
machine assembly code ready for execution.

As requests are issued to the driver from the upper file
system (e.g., VFS) @, each request is first delivered to the
corresponding extension handler for enforcing security poli-
cies @ . The handler may refer to the shared data maintained
the in eBPF map @ to allow or deny the request and may
even manipulate the arguments as necessary (e.g., change
the value of mode argument in open()). Security check result
from the handler is propagated back to the driver @ . Denied
requests are delivered immediately to the user-space with
the corresponding error code (errno) @ , whereas permit-
ted requests are forwarded to the lower file system @ . It
is important to note that the SANDFS driver only acts as a
thin interposition layer between the lower file system and
registered security kernel extensions from user-space. As
such, it does not perform any I/O operation or attempts to
serve requests on its own. Results from the lower file system
@ are simply delivered to the user-space @ .

App open() [/home/user/.ssh/key)
VFS walk_component() home H user)—'(.ssh)
SanAdFS lookup() Upper
Driver Dentry
___________________________ Eu;\';r;’a_th_ T
SandFS
Ex:;:sions lookup() (/home/user) (/home/user/.ssh)
ALLOW
Lower
Lower FS lookup() home @ Dentry E

Figure 3: This figure shows how SANDFS extensions enforce
access policies during VFS lookup operation.

To understand how SANDFS enforces user-defined security
policies in the kernel and avoids TOCTTOU race conditions,
we illustrate its working by taking lookup operation as an
example in Figure 3. It is the most common file system oper-
ation issued by the VFS internally to perform path to inode
mapping, once for each path component under a RCU lock
when serving system calls, such as open(), and mkdir().

When SANDFS is mounted on /home/user to sandbox the
working space of the user, each VFS lookup request is first
delivered to lookup implementation in SANDFS driver. The
driver lookup function first obtains the lower dentry and
its (lower) inode of the requested component (e.g., . ssh) by
calling into the lower file system, and subsequently invokes
dentry_path() to build its full path (e.g., /home/user/.ssh).
During this process any symbolic links or special names (e.g.,
. and . .) are resolved. The computed full path is then passed
as an argument to sandfs_lookup extension to perform reg-
istered checks. Upon successful return value (allow) from
the extension, SANDFS driver creates an (upper) inode for
the path component and returns to the VFS.

Unlike existing SCI-based file system sandboxing tech-
niques that attempt to enforce security policies at system
call boundary where user-supplied arguments (e.g., path)

APSys 18, August 27-28, 2018, Jeju Island, Republic of Korea

Component Loc New

SANDEFS kernel driver 3890
SANDEFS user-space library 1598

Table 3: Engineering effort required to support SANDFS func-
tionality.

have not been processed to get the corresponding kernel ob-
jects (e.g., dentry), SANDFS extensions are invoked from deep
within the kernel (below VFS) and work directly with low-
level path components and kernel dentry objects, thereby
avoiding any TOCTTOU races.

4 IMPLEMENTATION

We have implemented SANDEFS in Linux version 4.10. SANDFS
driver is based on wrapfs [22], which is a stackable no-ops
file system. That is, its file system handlers do not perform
any I/O operations; they simply call into the handlers of
the underlying file system. Being a stackable file system, a
malicious app could stack a number of SANDEFS file system
layers on top of each other and cause kernel stack over-
flow. To guard against such an attack, we limit the number
of SANDFS layers that could be stacked on a mount point.
Specifically, we rely on s_stack_depth field in the super-
block to track number of stacked layers and check it against
FILESYSTEM_MAX_STACK_DEPTH, which is limited to two. Ta-
ble 3 reports the number of lines of code for SANDFS.

5 USE CASES

Below we describe three important real-world usecases of
SANDFS that make it desirable over existing approaches.

5.1 Hiding private user data

Many applications require access to user's home directory to
work properly. However, at the same time malicious appli-
cations can steal private user data, such as $HOME/ . ssh keys.
With SANDFS framework, unprivileged users can construct
a sandbox to protect private files while executing untrusted
applications. For example, by mounting SANDFS on $HOME
directory, users can enforce custom security checks, thereby
hiding private directories and files in their workspace and
only allowing access to a few absolutely necessary files when
executing untrusted applications (see §3.7).

5.2 Designing secure applications

Applications that rely on untrusted third-party binaries
to extend their functionality can use SANDFS framework to
protect their private data. For instance, web browsers that ex-
ecute third-party extensions as separate processes to achieve
memory isolation can define and enforce fine-grained cus-
tom security access checks using SANDFS to protect access to

Ashish Bijlani and Umakishore Ramachandran

1 int sandfs_open(void *args) {

2

3 /% get mode */

4 u32 mode;

5 ret = sandfs_bpf_read(args, PARAM1, &mode, sizeof(u32));
6 if (ret) return ret;

7
8

/* example check: file creation not supported */

9 if (mode & O_CREAT) return -EPERM;

10

11 /* example enforcement: rewrite arg to force RDONLY mode */
12 mode = O_RDONLY;

13 ret = sandfs_bpf_write(args, PARAM1, &mode, sizeof(u32));
14 if (ret) return ret;

15

16 return 0; /* allow access */

17 }

Figure 4: Example SANDFS checks to deny creation of new
files and rewriting of arguments at runtime to create a sand-
boxing file system layer.

1 int sandfs_lookup(void *args) {

2

3 /* get path */

4 char path[PATH_MAX];

5 ret = sandfs_bpf_read(args, PARAMO, path, PATH_MAX);
6 if (ret) return ret;

7

8 /* lookup in map if the path is marked as private */
9 u32 *val = bpf_map_lookup(&access_map, path);

10

11 /* example check: prohibit access to private files */
12 if (val) return -EACCES;

13

14 return 0; /* allow operation */

15 }

Figure 5: Example SANDFS checks that can be enforced by
Android apps to limit access by untrusted advertisement li-
braries to private files.

sensitive data from malicious third-party extensions. How-
ever, since these extensions may need persistent storage,
browsers can restrict access to their private files using eBPF
maps, while providing full access to the files that are created
at runtime by these binaries. Figure 5 shows an example.

5.3 Hardening Containers

Containers package a number of interdependent applications
and their libraries to achieve a desired functionality. Each ap-
plication poses its own set of security requirements. SANDFS
can be used to harden containers, by stacking a separate layer
of SANDES for each application. Figure 4 shows an example
of how requests to new file creation could be denied.

6 EVALUATION

To measure the performance of SANDFS, we run the same
real-world workloads as used in Mbox [15] and Apiary [17]
under SANDFS sandbox and compare it with native mode.
Our testbed included Ubuntu 16.04.3 environment with Intel
Quad-Core i5-3550 3.3GHz, 16GB RAM, and EXT4 formatted
Samsung 850 EVO 250GB SSD. Results presented in Table 4
indicate that SANDFS incurs less than 10% overhead.

A Lightweight and Fine-grained File System Sandboxing FrameMRSiys *18, August 27-28, 2018, Jeju Island, Republic of Korea

Benchmark Native SANDFS Overhead Description

Tar 61.05s 63.84s 4.57%
Untar 5.13s 5.63s 9.75%
Build (-j4) 27.15s 29.67s 9.28%

Compress (tar.gz) linux-4.17 source files.
Decompress linux-4.17 gzipped (tar.gz) tarball.
Compiling linux-4.17 (tinyconfig) kernel with 4 parallel jobs.

Table 4: Results from benchmarking SANDFS for performance. We measure and report the total execution time of each bench-
mark with and without SANDFS (native). Machine used for benchmarking contains four cores.

7 CONCLUSION

In this work we presented a lightweight file system sand-
boxing framework called SANDFS. It has been designed as a
stackable file system for unprivileged users and applications
to enforce custom security checks to protect private data
from untrusted and malicious binaries. SANDFS incurs less
than 10% overhead. It’s source code is available on GitHub.

8 ACKNOWLEDGMENT

We would like to thank our shepherd, Dr. Adam Morrison,
and all anonymous reviewers for their insightful feedback
and suggestions, which substantially improved the content
and presentation of this paper. We also would like to acknowl-
edge the editorial efforts of Dr. Gargi Sawhney. This work
was funded in part by NSF CPS program Award #1446801,
and a gift from Microsoft Corp.

REFERENCES

[1] Jonathan Anderson. 2017. A Comparison of Unix Sandboxing

Techniques. FreeBSD Journal (2017).

Michael Backes, Sven Bugiel, and Erik Derr. 2016. Reliable

Third-Party Library Detection in Android and its Security

Applications. In Proceedings of the 23rd ACM Conference on Computer

and Communications Security (CCS). ACM, Vienna, Austria, 356-367.

[3] Michael Backes, Sven Bugiel, Christian Hammer, Oliver Schranz, and
Philipp von Styp-Rekowsky. 2015. Boxify: Full-fledged app
sandboxing for stock android. (Aug. 2015), 27-38.

[4] Adam Barth, Adrienne Porter Felt, Prateek Saxena, and Aaron
Boodman. 2010. Protecting Browsers from Extension Vulnerabilities.
In Proceedings of the 17th Annual Network and Distributed System
Security Symposium (NDSS). IEEE, San Diego, CA, 1-17.

[5] Andrew Berman, Virgil Bourassa, and Erik Selberg. 1995. TRON:
Process-specific File Protection for the UNIX Operating System. In
Proceedings of the 1995 USENIX Annual Technical Conference (ATC).
USENIX Association, New Orleans, Louisiana, 14-14.

[6] Theo de Raddt. 2015. pledge() a new mitigation mechanism. (2015).
http://openbsd.org/papers/hackfest2015-pledge/mgp00001.html

[7] Ruian Duan, Ashish Bijlani, Meng Xu, Taesoo Kim, and Wenke Lee.
2017. Identifying Open-Source License Violation and 1-day Security
Risk at Large Scale. In Proceedings of the 24th ACM Conference on
Computer and Communications Security (CCS). ACM, Dallas, Texas,
2169-2185.

[8] Tal Garfinkel et al. 2003. Traps and Pitfalls: Practical Problems in
System Call Interposition Based Security Tools. In Proceedings of the
10th Annual Network and Distributed System Security Symposium
(NDSS). IEEE, San Diego, CA, 163-176.

[2

—

[9] Tal Garfinkel, Ben Pfaff, Mendel Rosenblum, et al. 2004. Ostia: A
Delegating Architecture for Secure System Call Interposition. In
Proceedings of the 11th Annual Network and Distributed System
Security Symposium (NDSS). IEEE, San Diego, CA, 187-201.

[10] Ian Goldberg, David Wagner, Randi Thomas, and Eric A. Brewer. 1996.
A Secure Environment for Untrusted Helper Applications Confining
the Wily Hacker. In Proceedings of the 6th USENIX Security Symposium
(Security). USENIX Association, San Jose, CA, 1-1.

[11] Philip J Guo and Dawson R Engler. 2011. CDE: Using System Call
Interposition to Automatically Create Portable Software Packages. In
Proceedings of the 2011 USENIX Annual Technical Conference (ATC).
USENIX Association, Portland, OR, 21-21.

[12] IOVisor. 2017. eBPF: extended Berkley Packet Filter. (2017).
https://www.iovisor.org/technology/ebpf

[13] Kapil Jain and R Sekar. 2000. User-level infrastructure for system call
interposition: A platform for intrusion detection and confinement. In
Proceedings of the 7th Annual Network and Distributed System Security
Symposium (NDSS). IEEE, San Diego, CA, 19-34.

[14] Michael B Jones. 1993. Interposition agents: Transparently
interposing user code at the system interface. In Proceedings of the
14th ACM Symposium on Operating Systems Principles (SOSP). ACM,
Asheville, NC, 80-93.

[15] Taesoo Kim and Nickolai Zeldovich. 2013. Practical and Effective
Sandboxing for Non-root Users. In Proceedings of the 2013 USENLX
Annual Technical Conference (ATC). USENIX Association, San Jose,
CA, 139-144.

[16] Steven McCanne and Van Jacobson. 1993. The BSD Packet Filter: A
New Architecture for User-level Packet Capture. In Proceedings of the
Winter 1993 USENIX Annual Technical Conference (ATC). USENIX
Association, San Diego, CA.

[17] Shaya Potter and Jason Nieh. 2010. Apiary: Easy-to-use Desktop
Application Fault Containment on Commodity Operating Systems. In
Proceedings of the 2010 USENIX Annual Technical Conference (ATC).
USENIX Association, Boston, MA, 8-8.

[18] Niels Provos. 2003. Improving Host Security with System Call
Policies. In Proceedings of the 12th USENIX Security Symposium
(Security). USENIX Association, Washington, DC, 18-18.

[19] M. Szeredi. 2005. Filesystem in Userspace. (February 2005).
http://fuse.sourceforge.net

[20] Bharath Kumar Reddy Vangoor, Vasily Tarasov, and Erez Zadok. 2017.
To FUSE or Not to FUSE: Performance of User-Space File Systems. In
15th USENIX Conference on File and Storage Technologies (FAST) (FAST
17). USENIX Association, Santa Clara, CA, 77-90.

[21] Robert NM Watson, Jonathan Anderson, Ben Laurie, and Kris
Kennaway. 2010. Capsicum: Practical Capabilities for UNIX. In
Proceedings of the 2010 USENIX Annual Technical Conference (ATC).
USENIX Association, Boston, MA, 2-2.

[22] E.Zadok, I. Badulescu, and A. Shender. 1999. Extending File Systems
Using Stackable Templates". In Proceedings of the 1999 USENIX Annual
Technical Conference (ATC). USENIX Association, Monterey, CA,
57-70.

https://sandfs.github.io
http://openbsd.org/ papers/hackfest2015-pledge/mgp00001.html
https://www.iovisor.org/technology/ebpf
http://fuse.sourceforge.net

	Abstract
	1 Introduction
	2 Related Work
	3 Design and Architecture
	3.1 Threat Model
	3.2 Goals
	3.3 Challenges and Mechanisms
	3.4 Architecture
	3.5 eBPF
	3.6 SandFS APIs and abstractions
	3.7 Workflow

	4 Implementation
	5 Use cases
	5.1 Hiding private user data
	5.2 Designing secure applications
	5.3 Hardening Containers

	6 Evaluation
	7 Conclusion
	8 ACKNOWLEDGMENT
	References

