
© 2017 Nokia1

SAND: Towards High-Performance 
Serverless Computing

Istemi Ekin Akkus, Ruichuan Chen, Ivica Rimac, Manuel Stein, 

Klaus Satzke, Andre Beck, Paarijaat Aditya, Volker Hilt



© Nokia 20172

Serverless Computing -- Function-as-a-Service (FaaS)

Events Execution Result

Developer

Platform
Function
Code

define

events

upload 

function code



© 2017 Nokia3

The Promise of Serverless Computing for Developers

Increased productivityNo server management Continuous scaling



© 2017 Nokia4

Overheads of Existing Platforms

Extract Metadata

Process Metadata

Recognize Objects

Resize Image

Resized image & 
metadata & found 

objects

Image

{ ... “name”: “cats.jpg”, “resolution”: 
“1280x1024”, “ISO”: 400 ... }

{ ... “new_name”: “cats_resized.jpg”, 

“new_resolution”: “640x512” ... }

{ ... “objects”: [“cat”, “cup”] ... }

{ “new_name”: “cats_resized.jpg”, 

“new_resolution”: “640x512”,

“objects”: [“cat”, “cup”] }

Running an image processing pipeline on AWS, IBM and OpenWhisk



© 2017 Nokia5

Overheads of Existing Platforms

Extract Metadata

Process Metadata

Recognize Objects

Resize Image

Resized image & 
metadata & found 

objects

Image
Average of 10 runs with ‘warm’ starts

Overhead

Running an image processing pipeline on AWS, IBM and OpenWhisk

Overheads in existing solutions can limit the benefits of serverless computing.



© Nokia 20176

SAND
A high-performance serverless computing platform

Goals:

– Reduce latency for applications

– Utilize resources efficiently for platform operators



© 2017 Nokia7

Outline

• Motivation & Goal

• Background

• Overview of existing platforms & common practices

• SAND Key Ideas

• Evaluation



© 2017 Nokia8

Overview of Existing Platforms

• Functions are isolated with 
containers

Message Bus

…
Host1 HostN

• Functions interact via a 
distributed message bus

• Containers are deployed where 
resources are available

Function 
code

Function 
Container

• Containers handle events and 
stay deployed until a timeout

Platform



© 2017 Nokia9

Implications of Common Practices
Function 
Container

Function execution & concurrency:

1. Start a new container for every
function execution (i.e., cold start)

2. Keep and reuse idle containers (i.e., 
warm start)

3. Concurrency: cold starts or queuing

long invocation latency

resource inefficiency

long function 
interaction latency

Function interaction:

- Go through the distributed 
message bus



© 2017 Nokia10

Outline

• Motivation & Goal

• Background

• SAND Key Ideas

• Application-level sandboxing

• Hierarchical message queuing

• Evaluation



© 2017 Nokia11

SAND Application-level Sandboxing

Insight: Different concepts should 
have different fault isolation

Host

Application 1 Application 2

• Stronger isolation between 
applications

• Weaker isolation between 
functions of the same application



© 2017 Nokia12

Application 1

SAND Application-level Sandboxing Operation

Forked 
Instances

fork()

Host

Application 1 Application 21) Put applications in separate containers

2) Run functions as separate processes in 

the same container

3) Fork new processes to handle new events

Advantages:

1) Fast creation of function executions

2) Low execution footprint

3) Automatic de-allocation of resources



© 2017 Nokia13

SAND Hierarchical Message Queuing

Insight: Exploit locality of the 
functions

Message Bus

…
Host1 HostN

• Shortcuts for interacting 
functions of an application



© 2017 Nokia14

SAND Hierarchical Message Queuing Operation

1) Run a local message bus on each host

2) Functions interact with other functions 

via the local message bus

3) Coordinate local bus with the global bus

Advantages:

1) Low function interaction latency

2) Fault tolerance & parallelism if needed

Host

Global Message Bus

Local Message Bus

Application 1



© 2017 Nokia15

Addressing Overheads in SAND

Application-level 
Sandboxing

Hierarchical Message 
Queuing

➢ Fast startup

➢ Low execution footprint

➢ Automatic de-allocation

➢ Shortcuts for interacting 
functions



© 2017 Nokia16

Outline

• Motivation & Goal

• Background

• SAND Key Ideas

• Evaluation

• Revisiting the image processing application

• Local message bus and function interaction latencies

• Trade-off between idle memory cost and latency



© 2017 Nokia17

Image processing pipeline
SAND Overhead Comparison

Extract Metadata

Process Metadata

Recognize Objects

Resize Image

Resized image & 
metadata & 

found objects

Image

Overhead

➢ 43% reduction 
in total runtime



© 2017 Nokia18

➢ Access to local bus is 3-5x faster 
than global bus

Message Bus Access & Function Interaction Latencies
SAND Microbenchmarks

➢ 8.3x as fast as 
OpenWhisk

➢ 3.6x as fast as 
Greengrass

DT



© 2017 Nokia19

Exploring container timeout with OpenWhisk
Idle Memory Cost vs. Latency

Idle memory cost: product of assigned but 
unused memory and the duration of assignment.

With 1 sec timeout, 
18 - 33% of calls 
have cold starts

Longer timeouts 
lead to high idle 
memory cost

3.3x to 2 orders of 
magnitude reduced 
idle memory cost with 
no sacrifice in latency

Setup:

- 5 synthetic workloads 

- Different burst parameters

- Call a single function
SAND

SAND



© 2017 Nokia20

High-performance serverless computing platform
SAND

✓ Fast function invocation

✓ Increased resource efficiency

✓ Short function interaction latencies
Application 1

fork()

Host

Local Message Bus

Application 1

➢ Application-level sandboxing

➢ Hierarchical message queuing

Invite-only beta coming soon!




