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Abstract—It is often assumed that to maximize the perfor-
mance of a multithreaded application, the number of threads
created should equal the number of cores. While this may be true
for systems with four or eight cores, this is not true for systems
with larger number of cores. Our experiments with PARSEC
programs on a 24-core machine demonstrate this. Therefore,
dynamically determining the appropriate number of threads for
a multithreaded application is an important unsolved problem.
In this paper we develop a simple technique for dynamically
determining appropriate number of threads without recompiling
the application or using complex compilation techniques or mod-
ifying Operating System policies. We first present a scalability
study of eight programs from PARSEC conducted on a 24 core
Dell PowerEdge R905 server running OpenSolaris.2009.06 for
numbers of threads ranging from a few threads to 128 threads.
Our study shows that not only does the maximum speedup
achieved by these programs vary widely (from 3.6x to 21.9x), the
number of threads that produce maximum speedups also vary
widely (from 16 to 63 threads). By understanding the overall
speedup behavior of these programs we identify the critical
Operating System level factors that explain why the speedups
vary with the number of threads. As an application of these
observations, we develop a framework called “Thread Reinforcer”
that dynamically monitors program’s execution to search for the
number of threads that are likely to yield best speedups. Thread
Reinforcer identifies optimal or near optimal number of threads
for most of the PARSEC programs studied and as well as for
SPEC OMP and PBZIP2 programs.

I. Introduction

With the widespread availability of multicore systems a

great deal of interest has arisen in developing techniques for

delivering performance on multicore systems. Towards this end

many studies are being conducted to study the performance

of multithreaded workloads such as PARSEC on small scale

multicore machines [1]–[3], [5], [24]. Since performance of a

multithreaded application depends upon the number of threads

used to run on a multi-core system, finding appropriate number

of threads for getting best performance is very important. Using

few threads leads to under utilization of system resources

and using too many threads degrades application performance

because of lock-contention and contention of shared resources.

One simple off-line method is to run the application with

different number of threads and choose the appropriate number

of threads that gives best performance. However, this is time-

consuming, does not work if the number of threads is input

dependent, does not adapt to the system’s dynamic behavior,

and therefore is not a practical solution. It is often assumed

that to maximize performance the number of threads should

equal the number of cores [1]–[3], [5], [24], [28]. While this

is true for systems with 4 cores or 8 cores, it is not true for

systems with larger number of cores (see Table III).

On a machine with few cores, binding [12], [24], [28] (one-

thread-per-core model) with #threads == #cores may slightly

improve performance; but this is not true for machines with

larger number cores. As shown in Figure 1, we conducted exper-

iments with one-thread-per-core binding model and observed

that for most programs performance is significantly worse.

For example, swaptions performs best with 32 threads without

binding on our 24-core machine. When it is run with 24 threads

without binding the performance loss is 9% and with binding

the performance loss is 17%. Likewise, ferret performs best

with 63 threads without binding on our 24-core machine. If we

use one-thread-per-core binding model, then performance loss

of ferret is 54%. Performance losses of facesim and bodytrack

are also significant. More significantly, memory-intensive and

high lock-contention programs experience severe performance

degradation with binding on large number core machines. The

problem with binding is that bounded thread may not get to

run promptly. Thus, dynamically finding a suitable number of

threads for a multi-threaded application to optimize system

resources in a multi-core environment is an important open

problem.

The existing dynamic compilation techniques [6] for finding

appropriate number of threads are quite complex. In [6] authors

noted that the Operating System (OS) and hardware likely

cannot infer enough information about the application to make

effective choices such as determining how many number of

threads an application should leverage. However, since the

modern OSs have a rich set of tools available to examine

and understand the programs, using these tools, we present a

simple framework that dynamically finds the suitable number

of threads by observing OS level factors and show that the

number of threads suggested by the algorithm achieves near

optimal speedup. Our approach does not require recompilation

of the application or modifications to OS policies.

To understand the complex relationship between number of

threads, number of available cores, and the resulting speedups

for multithreaded programs on machines with larger number of

cores, we first conduct a performance study of eight PARSEC

programs on a 24 core Dell PowerEdge R905 machine running

OpenSolaris.2009.06. We study the performance of these
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Fig. 1: Binding (one-thread-per-core model) degrades performance.

programs for different numbers of threads ranging from a

few threads to 128 threads. Based on the scalability analysis of

these programs, we identify the OS level factors that explain

why an application has the best performance with only a

certain number of threads. Based on the observations, we

develop a framework called ‘Thread Reinforcer’ to dynamically

monitor program’s execution and OS level factors for finding

optimum number of threads that are expected to yield the best

speedup. While Thread Reinforcer is developed based on the

observations of PARSEC programs, it is also tested against

different multithreaded programs SPEC OMP and PBZIP2

programs. The overhead of Thread Reinforcer is very low and

it can be easily ported to any modern operating systems The

key contributions of this work are as follows:

• Our study of PARSEC shows that not only does the

maximum speedup achieved by these programs vary

widely (from 3.6x for canneal to 21.9x for swaptions), the

number of threads that produce maximum speedups also

vary widely (from 16 threads for facesim to 63 threads

for ferret). We observe that for five out of eight programs

the maximum speedup results from creating more threads

than the number of cores.

• While degree of parallelism, availability of additional

cores, and degree of lock contention were found to play an

important role in limiting performance, we also identified

additional factors. When the number of threads is less

than the number of cores the context switch rate plays

an important role. When the number of threads is greater

than the number of cores thread migrations performed by

the OS can limit the speedups.

• Based upon the above observations, we develop a frame-

work called ‘Thread Reinforcer’ for determining the

appropriate number of threads to create for an application.

The framework monitors the above factors at runtime and

uses the observations to guide the search for determining

the appropriate number of threads. The numbers of threads

determined by this algorithm are near optimal for most of

the applications from PARSEC, SPEC OMP, and PBZIP.

The remainder of this paper is organized as follows. Sec-

tion II presents the experimental setup, the speedups for eight

PARSEC programs for varying number of threads, and studies

the causes that limit the speedups. Section III presents Thread

Reinforcer framework for automatically finding number of

threads. Related work and conclusions are given in Sections 4

and 5.

TABLE I: Target Machine and OS.
DellTM PowerEdge R905:
24 Cores:

4 × 6-Core 64-bit AMD Opteron 8431 Processors (2.4 GHz);
L1 : 128 KB; Private to a core; L2 : 512 KB; Private to a core;
L3 : 6144 KB; Shared among 6 cores; Memory: 32 GB RAM;

Operating System: OpenSolaris 2009.06

TABLE II: PARSEC Programs Used: n is a command line argument
that determines the number of threads created.

Program Number of Threads Created

swaptions (main + workers) 1 + n

ferret (main + 6-stage pipeline) 1 + (1 + n + n + n + n + 1)

bodytrack (3-stage pipeline) 1 + n + 1

blackscholes (main + workers) 1 + n

canneal (main + workers) 1 + n

fluidanimate (main + workers) 1 + n

facesim (main + workers) 1 + (n-1)

streamcluster (main + workers) 1 + n

II. Scalability Study and Analysis
A. Experimental Setup

Target Machine and Operating System: Our experimental

setup consists of a Dell PowerEdge R905 server whose

configuration is shown in Table I. As we can see this machine

has 24 cores. We carried out this study using OpenSolaris

operating systems as there is a rich set of tools available to

examine and understand the behavior of programs running

under OpenSolaris. We ran each experiment 10 times and

present average results for the ten runs.

Applications Used: In this study we use eight programs

from the PARSEC suite – we could not use some of the

PARSEC programs because we were unable to get them to

compile and run under OpenSolaris. The eight programs used

in this work are described in Table II. For each program the

number of threads used is also described. Each program takes

a command line argument n and then uses it in determining

how many threads to create. As we can see from the table,

ferret and bodytrack are pipelined into six and three stages.

While the first and last stages consist of one thread each, the

intervening stages have n threads each. The rest of the programs

consist of a single main thread and multiple number of worker

threads whose number is determined based upon the value of

n. By varying the value of n we can run each application using

different number of threads. The implementations are based

upon pthreads and native inputs are used in all our experiments.

The maximum number of threads was limited to 128 in this

work as this was more than sufficient to study the full range

of program’s behavior on the 24 core Dell PowerEdge R905

server. We also evaluated the framework against seven SPEC

OMP programs and PBZIP2 program.
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B. Tuning the Implementation of Applications.

Previous studies of PARSEC have been carried out for

machine configurations with a small number of cores (2, 4,

or 8). It has been observed that the performance of these

programs scales well for a small number of cores. However,

since we are conducting a study which considers the scalability

of these application programs for larger number of cores, we

first examined the programs to see if their implementations

require any tuning consistent with the use of a larger number of

cores. Our study of the applications revealed two main issues

that required tuning of implementations. First, for programs that

make extensive use of heap memory, to avoid the high overhead

of malloc [36], we used the libmtmalloc library to allow

multiple threads to concurrently access to heap. Second, in

some applications where the input load is not evenly distributed

across worker threads, we improved the load distribution code.

By tuning the implementations in the above fashion, the

performance for seven out of eight applications considered

was improved. In some cases the improvements are small

(ferret, blackscholes, streamcluster, and bodytrack), moderate

improvement was observed in case of fluidanimate, and

very high improvement was observed for swaptions. The

improvement in swaptions can be explained as follows. We

observed dramatic reduction in locking events when we switch

from malloc to mtmalloc in a run where 24 worker threads

are used. In the original swaptions worker thread code the

input load of 128 swaptions is distributed across 24 threads as

follows: five swaptions each are given to 23 threads; and 13

swaptions are assigned to the 24th thread. This is because the

code first assigns equal load to all threads and all remaining

load to the last thread. When the number of threads is large, this

causes load imbalance. To remove this imbalance, we modified

the code such that it assigns six swaptions each to eight threads

and five swaptions each to the remaining 16 threads. This is

because instead of assigning the extra load to one thread, we

distribute it across multiple threads.

C. Performance for Varying Number of Threads
We ran each program for varying number of threads and

collected the speedups observed. Each program was run ten

times and speedups were averaged over these runs. Table III

shows the maximum speedup (Max Speedup) for each program

on the 24-core machine along with the minimum number of

TABLE III: Maximum speedups observed and corresponding number
of threads for PARSEC programs on the 24-core machine. Programs
were run from a minimum of 4 threads to a maximum of 128 threads.

Program Tuned Version Original
Max
Speedup

OPT
Threads

Max
Speedup

OPT
Threads

swaptions 21.9 33 3.6 7

ferret 14.1 63 13.7 63

bodytrack 11.4 26 11.1 26

blackscholes 4.9 33 4.7 33

canneal 3.6 41 no change

fluidanimate 12.7 21 12 65

facesim 4.9 16 4.6 16

streamcluster 4.2 17 4.0 17

threads (called OPT Threads) that produced this speedup. The

data is provided for both the tuned version of the program and

the original version of the program. As we can see, tuning

resulted in improved performance for several programs. In the

rest of the paper we will only consider the tuned versions of

the program.

As we can see from Table III, not only does the maximum

speedup achieved by these programs vary widely (from 3.6x

for canneal to 21.9x for swaptions), the number of threads

that produce maximum speedups also varies widely (from 16

threads for facesim to 63 threads for ferret). Moreover, for the

first five programs the maximum speedup results from creating

more threads than the number of cores, i.e. OPT-Threads is

greater than 24. For the other three programs OPT-Threads is

less than the number of cores.

The above observation that the value of OPT-Threads varies

widely is significant – it tells us that the choice of number of

threads that are created is an important one. Experiments in

prior studies involving PARSEC [2], [4], [24] were performed

for configurations with a small number of cores (4 and 8).

In these studies the number of threads was typically set to

equal the number of cores as this typically provided the best

performance. However, the same approach cannot be taken

when machines with larger number of cores are being used. In

other words, we must select appropriate number of threads to

maximize the speedups obtained.

To observe how the speedup varies with the number of

threads we plot the speedups for all our experiments in Figure 2.

The graph on the left shows the speedups for programs for

which OPT-Threads is greater than 24 and the graph on the

right shows the speedups for the programs for which OPT-
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Fig. 2: Speedup behavior of PARSEC workloads for varying number of threads: The graph on the left shows the behavior of applications
where maximum speedup was observed for Number o f T hreads > Number o f Cores = 24; and The graph on the right shows the behavior of
applications where maximum speedup was observed for Number o f T hreads < Number o f Cores = 24.
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Threads is less than 24. The programs with OPT-Threads

greater than 24 exhibit different behaviors. The speedups for

swaptions and ferret scale well with the number of threads with

maximum speedups resulting from use of 33 and 63 threads

respectively. While bodytrack provides substantial speedups,

once maximum speedup of 11.6 is achieved with 26 threads,

the speedups starts to fall gradually as more threads are added.

The speedups of blackscholes and canneal increase very slowly

with the number of threads due do lack of parallelism in these

programs. For programs with OPT-Threads less than 24, once

the number of threads reaches OPT-Threads, speedups fall as

additional threads are created. This behavior is the result of

lock contention that increases with the number of threads.

D. Factors Determining Scalability

In this section we present additional data collected with

the aim of understanding the factors that lead to the observed

speedup behaviors presented in Figure 2. Using the prstat [7]

utility, we studied the following main components of the

execution times for threads in each application.
1) User: The percentage of time a thread spends in user mode.

2) System: The percentage of time a thread spends in processing

the following system events: system calls, system traps, text

page faults, and data page faults.

3) Lock-contention: The percentage of time a thread spends

waiting for user locks, condition-variables etc.

4) Latency: The percentage of time a thread spends waiting for

a CPU. In other words, although the thread is ready to run, it

is not scheduled on any core.

Program Critical Threads

ferret Rank stage Threads

canneal Main Thread

swaptions Worker Threads

blackscholes Main Thread

bodytrack All Threads

fluidanimate Worker Threads

streamcluster Worker Threads

facesim All Threads
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Fig. 3: Breakdown of elapsed time of critical threads.

We studied the above times for all threads to see if changes

in these times would explain the changes in speedups observed

by varying number of threads. Although we examined the

data for all threads, it quickly became apparent that in many

programs not all threads were critical to the overall speedup.

We identified the critical threads and studied them in greater

detail. The critical threads for each application are listed in the

table below. Figure 3 provides the breakdown of the time of

critical threads in the above four categories – this data is for the

OPT-Threads run and is the average across all critical threads.

As we can see, in some programs lock-contention (LCK) plays

a critical role, in others the threads spend significant time

waiting for a CPU as latency (LAT) is high, and the system

time (SYS) is the highest for canneal and blackscholes.

In the remainder of this section we analyze the above

times for each of the programs in greater detail to study their

relationship with speedup variations that are observed when

number of threads is varied. We further identify the program

characteristics that are the causes for the observed speedup

variations.

1) OPT-Threads > Number of Cores

Scalable Performance. As we can see from the graph on

the left in Figure 2, for three programs (swaptions, bodytrack,

and ferret) in this category, the speedups scale quite well. As

the number of threads is varied from a few threads to around 24,

which is the number of cores, the speedup increases linearly

with the number of threads. However, once the number of

threads is increased further, the three programs exhibit different

trends as described below:

• (Erratic) swaptions: Although the speedup for swaptions

can be significantly increased -- from 20 for 25 threads

to 21.9 for 33 threads -- its trend is erratic. Sometimes

the addition of more threads increases the speedup while

at other times an increase in number of threads reduces

the speedup.

• (Steady Decline) bodytrack: The speedup for bodytrack

decreases as the number of threads is increased beyond

26 threads. The decline in speedup is quite steady.

• (Continued Increase) ferret: The speedup for ferret con-

tinues to increase linearly. In fact the linear increase in

speedup is observed from the minimum number of 6

threads all the way up till 63 threads. Interestingly no

change in behavior is observed when the number of threads

is increased from less than the number of cores to more

than the number of cores.

Next we trace the differing behaviors back to specific charac-

teristics of these programs.

swaptions: First let us consider the erratic behavior of

speedups observed in swaptions. We first examined the lock

contention and latency information. As shown in Figure 4(a),

the lock contention (LOCK) is very low and remains very

low throughout and the latency (LAT) increases steadily which

shows that the additional threads created are ready to run but

are simply waiting for a CPU (core) to become available. This

keeps the execution time to be the same. Therefore we need

to look elsewhere for an explanation. Upon further analysis

we found that the speedup behavior is correlated to the thread

migration rate. As we can see from Figure 4(b), when the

migration rate goes up, the speedup goes down and vice versa

– the migration rate was measured using the mpstat [7] utility.

Migrations are expensive events as they cause a thread to pull

its working set into cold caches, often at the expense of other

threads [7]. Thus, the speedup behavior is a direct consequence

of changes in thread migration rate.

The OS scheduler plays a significant role here as it is

responsible for making migration decisions. When a thread

makes a transition from sleep state to a ready-to-run state, if
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TABLE IV: Behavior of ferret.
Total n Load (1) Segment (n) Extract (n) Vector (n) Rank (n) Out (1) Speedup
Threads USR SYS LOCK USR LOCK USR LOCK USR LOCK USR LOCK USR LOCK

15 3 22 4 74 8 92 1 99 44 56 100 0 0.5 99.3 3.3

31 7 44 7.8 48 6.7 93 1 99 43 57 100 0 0.6 99 7.5

47 11 56 11.3 32 5.4 95 1 99 40 60 100 0 0.7 99 11.5

55 13 64 14 19 5 95 1 99 44 56 98 0 0.7 99 12.5

63 15 79 20 0 5 95 1 99 43 57 96 0 0.7 99 14.1

71 17 77 20 0 5 95 1 99 37 63 80 16 0.7 99 13.8

87 21 78 17 0 4 96 1 99 28 72 65 33 0.4 99.3 13.7

103 25 75 17 0 3 97 1 99 24 76 53.5 45 0.4 99.3 13.4

119 29 74 17 0 3 97 1 99 20 80 46 52.5 0.4 99.4 13.2

127 31 70 20 0 3 97 1 99 19 81 40 59 0.4 99.4 13.1
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Fig. 4: swaptions: Cause of Erratic Speedup Changes.

the core on which it last ran is not available, the thread is likely

to be migrated to another available core. In general, one would

expect more migrations as the number of threads increases

beyond the number of cores. However, if the number of threads

is divisible by the number of cores, then the likelihood of

migrations is less compared to when this is not the case. In

the former case, the OS scheduler can allocate equal number

of threads to each core, balancing the load, and thus reducing

the need for migrations. Thus we conclude that variations in

degree of load balancing across cores causes corresponding

variations in thread migration rate and hence the observed

speedups. For example, in Figure 4(b), the thread migration

rate for 48 threads on 24 cores is lower than thread migration

rate for 40 threads on 24 cores. Moreover, we can expect low

thread migration rate when the input load (128 swaptions) is

perfectly divisible by the number of threads (e.g., 16, 32, 64

etc.).

bodytrack: Next let us consider the steady decline in speedup

observed for bodytrack. Figure 5(a) shows that although the

latency (LAT) rises as more threads are created, so does the

lock contention (LOCK) which is significant for bodytrack.

In addition, bodytrack is an I/O intensive benchmark where

I/O is performed by all the threads. We observed that this

program produces around 350 ioctl() calls per second. Both

lock contention and I/O have the consequence of increasing the

thread migration rate. This is because both lock contention and

I/O result in sleep to wakeup and run to sleep state transitions

for the threads involved. When a thread wakes up from the

sleep state, the OS scheduler immediately tries to give a core

to that thread, if it fails to schedule the thread on the same

core that it used last, it migrates the thread to another core.

As we can see from Figure 5(b), the thread migration rate for

bodytrack rises with the number of threads which causes a

steady decline in its speedup.

ferret: The behavior of this program is interesting as the

speedup for it increases linearly starting from 6 threads to

all the way up to 63 threads even though only 24 cores are
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Fig. 5: bodytrack: Cause of Decline in Speedup.

available. To understand this behavior we need to examine

the program in greater detail. The program is divided into six

pipeline stages – the results of processing in one stage are

passed on to the next stage. The stages are: Load, Segment,

Extract, Vector, Rank, and Out. The first and last stage have a

single thread but each of the intermediate stages are a pool of

n threads. Between each pair of consecutive stages a queue is

provided through which results are communicated and locking

is used to control queues accesses.

The reason for the observed behavior is as follows. The

Rank stage performs most of the work and thus the speedup

of the application is determined by the Rank stage. Moreover

the other stages perform relatively little work and thus their

threads together use only a fraction of the compute power of

the available cores. Thus, as long as cores are not sufficiently

utilized, more speedup can be obtained by creating additional

threads for the Rank stage. The maximum speedup of 14.1 for

ferret was observed when the total number of threads created

was 63 which actually corresponds to 15 threads for Rank

stage. That is, the linear rise in speedup is observed from 1

thread to 15 threads for the Rank stage which is well under the

total of 24 cores available – the remaining cores are sufficient

to satisfy the needs of all other threads.

The justification of the above reasoning can be found in

the data presented in Table IV where we show the average

percentage of USR and LOCK times for all stages and SYS

time for only Load stage because all other times are quite

small. The threads belonging to Segment, Extract, and Out

stages perform very little work and mostly spend their time

waiting for results to become available in their incoming queues.

While the Load and Vector stages do perform significant amount

of work, they nevertheless perform less work than the Rank

stage. The performance of the Rank stage determines the overall

speedup – adding additional threads to the Rank stage continues

to yield additional speedups as long as this stage does not

experience lock contention. Once lock contention times start

to rise (starting at n = 17), the speedup begins to fall.
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Fig. 6: Maximum Speedup When Number of Threads < Number of Cores.
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Fig. 7: Voluntary Context Switch Rate.

To further confirm our observations above we ran an

experiment in which we increased the number of threads in

the Rank stage and lowered the number of threads in other

intermediate stages. We found that the configuration with (1,

10, 10, 10, 16, 1) threads gave a speedup of 13.9 and when

we changed the configuration to (1, 16, 16, 16, 16, 1) threads

the speedup remained the same. This further confirms the

importance of the Rank stage.

Performance Does Not Scale. (blackscholes and canneal)

Although the maximum speedups of these programs (4.9

and 3.6) are observed when 32 and 40 worker threads are

created, the speedups of both these programs increase very

little beyond 16 worker threads. This is because most of the

work is performed by the main thread and the overall CPU

utilization becomes low. The main thread takes up 85% and

70% of the time for blackscholes and canneal respectively.

During rest of the time the parallelized part of the program

is executed by worker threads. The impact of parallelization

of this limited part on the overall speedup diminishes with

increasing number of threads.

2) OPT-Threads < Number of Cores

The three programs where maximum speedup was achieved

using fewer threads than number of cores are fluidanimate,

facesim, and streamcluster. In these programs the key factor

that limits performance is lock contention. Figure 6 shows that

the time due to lock contention (LOCK) dramatically increases

with number of threads while the latency (LAT) shows modest

or no increase. The maximum speedups are observed at 21

threads for fluidanimate, 16 threads for facesim, and 17 threads

for streamcluster.

When the number of threads is less than the number of cores,

the load balancing task of the OS scheduler becomes simple

and thread migrations become rare. Thus, unlike swaptions and

bodytrack where maximum speedups were observed for greater

than 24 threads, thread migration rate does not play any role in

TABLE V: Voluntary vs. Involuntary Context Switches.
Program VCX (%) ICX (%)

fluidanimate 84 16

facesim 97 3

streamcluster 94 6

swaptions 11 89

ferret 13 87

the performance of the three programs considered in this section.

However, the increased lock contention leads to slowdowns

because of increased context switch rate. We can divide context-

switches into two types: involuntary context-switches (ICX)

and voluntary context-switches (VCX). Involuntary context-

switches happen when threads are involuntary taken off a

core (e.g., due to expiration of their time quantum). Voluntary

context-switches occur when a thread performs a blocking

system call (e.g., for I/O) or when it fails to acquire a lock.

In such cases a thread voluntarily releases the core using the

yield() system call before going to sleep using lwp_park()

system call. Therefore as more threads are created and lock

contention increases, VCX context switch rate rises as shown

in Figure 7. It is also worth noting that most of the context

switches performed by the three programs are in the VCX

category. We measured the VCX and ICX data using the prstat

utility. Table V shows that the percentage of VCX ranges from

84% to 97% for the three programs considered here. In contrast,

the VCX represents only 11% and 13% of context switches

for swaptions and ferret.

Since the speedup behavior of an application correlates

with variations in LOCK, MIGR_RATE, VCX_RATE, and

CPU_UTIL, in the next section we develop a framework for

automatically determining the number of threads by runtime

monitoring of the above characteristics.

III. The Thread Reinforcer Framework
The applications considered allow the user to control the

number of threads created using the command line argument

n in Table II. Since our experiments show that the number of

threads that yield peak performance varies greatly from one

program to another, the selection of n places an added burden

on the user. Therefore, in this section, we develop a framework

for automatically selecting the number of threads.

The framework we propose runs the application in two steps.

In the first step the application is run multiple times for short

durations of time during which its behavior is monitored and

based upon runtime observations Thread Reinforcer searches

for the appropriate number of threads. Once this number is

found, in the second step, the application is fully reexecuted

with the number of threads determined in the first step. We
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TABLE VI: Factors considered wrt to the number of threads.
Factor ≤ 24 Threads > 24 Threads

LOCK Yes Yes

VCX_RATE Yes -

MIGR_RATE - Yes

CPU_UTIL Yes Yes

have to rerun the applications for short durations because the

applications are written such that they do not support varying

of number of threads online. Thus, Thread Reinforcer does not

consider phase changes of the target program. However, out

of the 16 programs tested, only the ammp program shows two

significantly different phases and its first phase dominates the

execution. Therefore Thread Reinforcer works well also for

the ammp program.

Each time an application is to be executed on a new input,

Thread Reinforcer is used to determine the appropriate number

of threads for that input. This is done in order to handle

applications whose runtime behavior is input dependant and

thus the optimal number of threads may vary across inputs.

Our goal is twofold: to find the appropriate number of threads

and to do so quickly so as to minimize runtime overhead. The

applications we have considered take from tens of seconds

to a few hundred seconds to execute in the OPT-Threads

configuration. Therefore, we aim to design Thread Reinforcer

so that the times it takes to search for appropriate number of

threads is only a few seconds. This ensures that the benefits

of the algorithm outweigh the runtime overhead of using it.

Thread Reinforcer searches for appropriate number of threads

in the range of Tmin and Tmax threads as follows. It runs the

application for increasing number of threads for short time

durations. Each successive run contains either Tstep or Tstep/2

additional threads. The decision of whether or not to run

the program for higher number of threads and whether to

increase the number of threads by Tstep or Tstep/2, is based

upon changes in profiles observed over the past two runs. The

profile consists of four components: LOCK (lock contention),

MIGR_RAT E (thread migration rate), VCX_RAT E (voluntary

context switch rate), and CPU_UT IL (processor utilization).

The values of each of these measures are characterized as either

low or high based upon set thresholds for these parameters.

Our algorithm not only examines the current values of above

profiles, it also examines how rapidly they are changing. The

changes of these values over the past two runs are denoted

as ΔLOCK, ΔMIGR_RATE, ΔVCX_RATE, and ΔCPU_UTIL.

The changes are also characterized as low and high to indicate

whether the change is gradual or rapid. At any point in the

most penultimate run represents the current best solution of

our algorithm and the last run is compared with the previous

run to see if it should be viewed as an improvement over the

penultimate run. If it is considered to be an improvement, then

the last run becomes our current best solution. Based upon

the strength of improvement, we run the program with Tstep

or Tstep/2 additional threads. The above process continues as

long as improvement is observed. Eventually Thread Reinforcer

terminates if no improvement or degradation is observed, or we

have already reached the maximum number of threads Tmax.

Table VI identifies the components that play an important

role when the number of threads is no more than the number

of cores (i.e., 24) versus when the number of threads is greater

than the number of cores. The lock contention is an important

factor which must be considered throughout. However, for ≤ 24

threads the VCX_RAT E is important while for > 24 threads

the MIGR_RAT E is important to consider. In general, the limit

of parallelism for a program may reach at any time. Thus

CPU_UT IL is an important factor to consider throughout. The

above observations are a direct consequence of our observations

made during the study presented earlier.

Figure 8 presents Thread Reinforcer in detail. Thread Rein-

forcer is initiated by calling FindN() and when it terminates it

returns the value of command like parameter n that is closest

to the number of threads that are expected to give the best

performance. FindN() is iterative – it checks for termination by

calling Terminate() and if termination conditions are not met,

it calls ComputeNextT () to find out the number of threads that

must be used in the next run. Consider the code for Terminate().
It first checks if processor utilization has increased from the

penultimate run to the last run. If this is not the case then the

algorithm terminates otherwise the lock contention is examined

for termination. If lock contention is high then termination

occurs if one of the following is true: lock contention has

increased significantly; number of threads is no more than the

number of cores and voluntary context switch rate has sharply

increased; or number of threads is greater than the number of

cores and thread migration rate has sharply increased. Finally,

if the above termination condition is also not met we do not

terminate the algorithm unless we have already reached the

upper limit for number of threads. Before iterating another step,

the number of additional threads to be created is determined.

ComputeNextT () does this task – if the overheads of locking,

context switches, or migration rate increase slowly then Tstep

additional threads are created; otherwise Tstep/2 additional

threads are created.

We implemented Thread Reinforcer to evaluate its effective-

ness in finding appropriate number of threads and study its

runtime overhead. Before experimentation, we needed to select

the various thresholds used by Thread Reinforcer. To guide the

selection of thresholds we used three of the eight programs:

fluidanimate, facesim, and blackscholes. We ran these selected

programs on small inputs: for fluidanimate and blackscholes we

used the simlarge input and for facesim we used the simsmall

input. We studied the profiles of the programs and identified

the threshold values for LOCK, MIGR_RATE, VCX_RATE,

CPU_UTIL as follows. The threshold values were chosen

such that after reaching the threshold value, the value of the

profile characteristic became more sensitive to the number of

threads and showed a rapid increase. There are two types of

threshold values: absolute thresholds and Δ thresholds. The Δ

threshold indicates how rapidly the corresponding characteristic

is changing. For LOCK and VCX_RATE both thresholds are

used by our algorithm. For MIGR_RATE and CPU_UTIL

only Δ threshold is used. It should be noted that the three

programs that were chosen to help in selection of thresholds

collectively cover all four of the profile characteristics: for

fluidanimate both LOCK and MIGR_RATE are important;

for facesim VCX_RATE is important; and for blackscholes

CPU_UTIL is important.
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TABLE VII: Algorithm vs. Optimal (PARSEC programs).
Program Number of Threads Speedups

Algorithm Optimal Algorithm Optimal

facesim 16 16 4.9 4.9

bodytrack 26 26 11.4 11.4

swaptions 33 33 21.9 21.9

ferret 63 63 14.1 14.1

fluidanimate 25 21 12.2 12.7

streamcluster 25 17 4.0 4.2

canneal 9 41 2.9 3.6

blackscholes 9 33 3.7 4.9

TABLE VIII: Termination Condi-
tions for PARSEC Programs.

Program Condition

facesim VCX_RATE

bodytrack MIGR_RATE

swaptions LOCK

ferret LOCK

fluidanimate LOCK

streamcluster MIGR_RATE

canneal CPU_UTIL

blackscholes CPU_UTIL

TABLE IX: Search Overhead (seconds) for PARSEC
programs.

Program Tsearch Tparallel Percentage

canneal 0.5 131 0.4%

facesim 1.1 186 0.6%

blackscholes 0.5 85 0.6%

streamcluster 3.2 226 1.4%

fluidanimate 1.5 69 2.2%

ferret 1.3 41.9 3.1%

bodytrack 1.6 43.8 3.7%

swaptions 0.9 21.3 4.2%

TABLE X: Algorithm vs. Optimal (Other programs).
Program Number of Threads Speedups

Algorithm Optimal Algorithm Optimal

ammp 24 24 11.8 11.8

art 32 32 8.8 8.8

fma3d 16 20 5.5 5.7

gafort 64 48 9.7 9.8

mgrid 16 16 5.0 5.0

swim 32 24 3.9 4.0

wupwise 24 24 8.6 8.6

pbzip2 24 28 6.7 6.9

TABLE XI: Termination Condi-
tions for Other Programs.

Program Condition

ammp MIGR_RATE

art LOCK

fma3d LOCK

gafort CPU_UTIL

mgrid VCX_RATE

swim CPU_UTIL

wupwise CPU_UTIL

pbzip2 CPU_UTIL

TABLE XII: Search Overhead (seconds) for Other
programs.

Program Tsearch Tparallel Percentage

ammp 0.9 267.1 0.3%

art 1.3 62.8 2.1%

fma3d 0.7 23 3.0%

gafort 1.6 238.9 0.7%

mgrid 0.7 32.1 2.2%

swim 1.3 302.4 0.4%

wupwise 1.2 162.5 0.7%

pbzip2 1.1 201.3 0.6%

In our experiments we ran all eight PARSEC programs

considered in this work and all the programs were run on native

inputs – note that the thresholds were selected by running only

three programs using small inputs. The number of threads

was varied in the range of 8 (Tmin) to 72 (Tmax) threads and

Tstep was set to 8 threads. The time interval for which an

application was profiled in each iteration of our algorithm was

set to 100 milliseconds beyond the initial input reading phase

of each application. The profiling utilities prstat and mpstat by

default use a 1 second interval, i.e. this is the minimum timeout

value we could have used with the default implementation. To

minimize the runtime overhead of our algorithm we wanted to

use smaller time intervals. Therefore we modified these utilities

to allow time intervals with millisecond resolution.

Table VII presents the number of threads found by Thread

Reinforcer and compares it with the OPT-Threads number that

was reported earlier in the paper. The corresponding speedups

for these number of threads are also reported. From the results

we can see that for the first four programs (facesim, bodytrack,

swaptions, ferret) the number of threads found by our algorithm

is exactly the same as OPT-Threads. For the next two programs,

fluidanimate and streamcluster, the numbers are close as they

differ by Tstep/2(= 4) and Tstep(= 8) respectively. The loss

in speedups due to this suboptimal choice of the number of

threads in quite small. For the last two programs, canneal and

blackscholes, the number of threads Thread Reinforcer selects

is much smaller than OPT-Threads.

Table VIII shows the conditions which caused the termination

of Thread Reinforcer. For six of these programs lock contention,

migration rate, and voluntary context switch rate play an

important role. For the other two programs the programs

terminate because improvement in the CPU_UTIL is small and

hence Thread Reinforcer terminates assuming that there is no

more parallelism in the application. The termination condition

for canneal and blackscholes explains why the number of

threads selected by our algorithm differs greatly from the

OPT-Threads value. The speedup of these programs rises very

slowly and thus the change in CPU_UTIL is quite low. For

the threshold setting we have used Thread Reinforcer simply

concludes that there is no longer any need to add threads as

there is no more parallelism to exploit.

Finally we consider the search overhead of Thread Reinforcer

for PARSEC programs. Table IX shows the times for the search

and parallel execution for each of the programs. As we can

see from the table, the search times vary from 0.5 seconds to

3.2 seconds while the parallel execution times of the programs

range from 21.9 seconds to 226 seconds. The final column

shows the search time as a percentage of parallel execution

time for each program. The programs are listed in increasing

order of this percentage value. For the first three programs this

percentage is extremely small – ranging from 0.4% to 0.6%.

For the remaining programs these percentages are between

1.4% and 4.2%. Thus, the runtime overhead of our algorithm

is quite small. Therefore it can be used to select the number

of threads when an application is run on a new input.

A. Thread Reinforcer Against Other Programs
Since Thread Reinforcer uses the thresholds of PARSEC

programs, we would like to see how Thread Reinforcer works

for programs other than PARSEC. For this, we tested Thread

Reinforcer against seven SPEC OMP programs and PBZIP2

program, a total of eight other programs. Table X lists the

programs, and also presents the number of threads found

by Thread Reinforcer and compares it with the OPT-Threads

number.

Table XI shows the conditions which caused the termination

of Thread Reinforcer. For four of these programs CPU

utilization (no more parallelism to exploit), and for other

four programs lock contention, migration rate, and voluntary

context switch rate play an important role. Table XII shows

that the search overhead is very low compared to the parallel

execution-time of the programs. Therefore, Thread Reinforcer

can be used to find the optimum number of threads of

multithreaded applications, moreover this experiment shows

that the thresholds are broadly applicable.

B. Limitations
Initialization Period: An important limitation of the current

implementation of Thread Reinforcer is that it works well for

applications that have short initialization period (i.e., creation

of worker threads early in the execution is observed). Since the

current implementation of the applications studied do not allow
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us to assign arbitrary number of threads at run-time, we need

to rerun the applications for finding the optimum number of

threads. Therefore, if the initialization period of an application

is too long then the search overhead increases and benefits of

– Convert() converts number of threads into command line param. value;
– Profile P =<CPU_UT IL,LOCK,VCX_RAT E,MIGR_RAT E >;
– (Tbest ,Nbest ) is the current best solution; Pbest is its profile;
– (Ttry,Ntry) is the next solution tried; Ptry is its profile;
– ΔP. f ield = Ptry. f ield−Pbest . f ield;
– low returns true/false if P. f ield or ΔP. f ield is low/not low;
– high returns true/false if P. f ield or ΔP. f ield is high/not high;
– Tstep is increments in which number of threads is increased;
– Tmin/Tmax is minimum/maximum number of threads allowed;

FindN() {
Tbest ← Tmin; Nbest ←Convert(Tbest );
Pbest ← Collect profile for 100 milliseconds run with parameter Nbest .

Ttry ← Tmin +Tstep; Ntry ←Convert(Ttry);
Ptry ← Collect profile for 100 milliseconds run with parameter Ntry.

loop
if Terminate(Pbest ,Ptry) = true then

return(Nbest )
else

Tbest ← Ttry; Nbest ← Ntry; Pbest ← Ptry

Ttry ←ComputeNextT (Pbest ,Ptry);
Ntry ←Convert(Ttry);
Ptry ← Collect profile for 100 milliseconds run with parameter Ntry.

endif
endloop

}

ComputeNextT (Pbest ,Ptry) {
if Ttry ≤ NumCores then

if low(Ptry.LOCK) or low(Ptry.ΔVCX_RAT E) or
(high(Ptry.LOCK) and low(Ptry.ΔLOCK))

then
ΔT = Tstep

else
ΔT = Tstep/2

endif
else – Ttry > NumCores

if low(Ptry.LOCK) or low(Ptry.ΔMIGR_RAT E) then
ΔT = Tstep

else
ΔT = Tstep/2

endif
endif
return( minimum(Ttry +ΔT,Tmax) )

}

Terminate(Pbest ,Ptry) {
– terminate if no more parallelism was found
if low(Ptry.ΔCPU_UT IL) then return(true) endif

– terminate for high lock contention, VCX rate, and migration rate
if high(Ptry.LOCK) then

if high(Ptry.ΔLOCK) or
Ttry ≤ NumCores and high(Ptry.ΔVCX_RAT E) or
Ttry > NumCores and high(Ptry.ΔMIGR_RAT E)

then
return(true)

endif
endif

– terminate if no more threads can be created
if Ttry = Tmax then

Tbest ← Ttry; Nbest ← Ntry; return(true)
endif

– otherwise do not terminate
retrun( f alse)

}

Fig. 8: FindN() returns the best value for command line parameter,
Nbest , which corresponds to the appropriate number of threads
determined for running the application. It is an iterative algorithm
that calls Terminate to see if it is time to terminate the search with
current value of Nbest or whether to increase the number of threads
to the number returned by ComputeNextT().

Thread Reinforcer will decline. However, the implementation

can be adapted such that we rerun the application from the

starting point of the worker threads invocation.

Phase Changes: Thread Reinforcer does not consider phase

changes of the target program. However, out of 16 programs

tested, only ammp program shows two significantly different

phases and its first phase dominates the whole execution. Thus,

Thread Reinforcer works well for it also.

Cache Sharing: Since the focus of our work is on the effect

of OS level factors on the scalability of multithreaded programs,

other factors such as architectural factors including cache

sharing is outside the scope of this work.

IV. Related Work
Dynamically finding a suitable number of threads for a

multi-threaded application to optimize performance in a multi-

core environment is an important problem. While this issue

has been studied in context of quad-core and 8-core systems,

it has not been studied for systems with larger number of

cores. When number of cores is small it is often recommended,

that number of threads created equal the number of cores. In

contrast our work demonstrates that on a 24 core system many

of the PARSEC programs require much more than 24 threads

to maximize speedups (e.g., ferret requires 63 threads to get

the highest speedup).

Controlling Number of Threads. In [6], Lee et al. show how

to adjust number of threads in an application dynamically to

optimize system efficiency. They develop a run-time system

called “Thread Tailor” which uses dynamic compilation to

combine threads based on the communication patterns between

them in order to minimize synchronization overhead and

contention of shared resources (e.g., caches). They achieve

performance improvements for three PARSEC programs on

quad-core and 8-core systems. However, they used a baseline

of number of threads equals the number of cores (4 or 8) for

performance comparisons and they did not present the optimal

number of threads resulting from their technique.

To improve performance and optimize power consumption

for OpenMP based multi-threaded workloads, Suleman et al.

[8], proposed a framework that dynamically controls number of

threads using runtime information such as memory bandwidth

and synchronization. They show that there is no benefit of using

larger number of threads than the number of cores. Similarly,

Nieplocha et al. [9] demonstrate that some applications saturate

shared resources as few as 8 threads on an 8-core Sun

Niagara processor. Curtis-Maury et al., [28] predict efficient

energy-concurrency levels for parallel regions of multithreaded

programs using machine learning techniques. Thus once again

the above works considered small number of cores and used

one-thread-per-core binding model.

Jung et al. [10], presented performance estimation models

and techniques for generating adaptive code for quad-core

SMT multiprocessor architectures. The adaptive execution

techniques determine an optimal number of threads using

dynamic feedback and run-time decision runs. Similarly, Kunal

et al. [20] proposed an adaptive scheduling algorithm based

on the feedback of parallelism in the application. Many other

works that dynamically control number of threads are aimed at
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studying power performance trade-offs [11]–[13], [25], [27].

Unlike the above, Barnes et al. [33] presented regression tech-

niques to predict parallel program scaling behavior (processor

count). Singh et al., [25] presented scalability prediction models

of parallel applications on a multicore system.

The Effect of OS level factors & Scheduling Techniques.

Some studies [21]–[23] investigate the performance implica-

tions of thread migrations on multi-core machines. Several

researchers [14]–[17] use application performance and concur-

rency characteristics such as speedup, execution time, synchro-

nization information to make better scheduling decisions for

parallel applications. Ferreira et al. [18] showed how to quantify

the application performance costs due to local OS interference

on a range of real-world large-scale applications using over

ten thousand nodes, and [19] identifies a major source of

noise to be indirect overhead of periodic OS clock interrupts,

that are used by all modern OS as a means of maintaining

control. [26] proposed a hardware-based and system software

configurable mechanism to achieve fairness goals specified

by system software in the entire shared memory system, and

consequently it allows to achieve desired fairness/performance

balance. In contrast our work focuses on selecting the number

of threads under the default scheduling schemes used by

OpenSolaris.

Several previous works [29], [31], [32] consider scheduling

techniques based upon different application characteristics (e.g.,

cache-usage) and dynamic estimates of the usage of system

resources. However, these techniques allocate the threads that

are provided and do not consider the impact of number of

threads on the characteristics of applications. Moreover, the

work [6] noted that the OS and hardware likely cannot infer

enough information about the application to make effective

choices such as determining how many number of threads an

application should leverage. However, we developed a simple

technique for dynamically determining appropriate number of

threads without recompiling the application or using complex

compilation techniques or modifying OS policies.

V. Conclusions
It is often assumed that to maximize performance the number

of threads created should equal the number of cores. While

this may be true for systems with 4 cores or 8 cores, this is not

true for systems with significantly larger number of cores. In

this paper we demonstrated this point by studying the behavior

of several multithreaded programs on a 24 core machine.

We studied the factors that limit the performance of these

programs with increasing number of threads in detail. Based

upon the results of this study, we developed Thread Reinforcer,

a framework for dynamically determining suitable number

of threads for a given application run. Thread Reinforcer is

not only effective in selecting the number of threads, it also

has very low runtime overhead in comparison to the parallel

execution time of the application.
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