
Optimization for Multi-thread Data-Flow

Software

Helmut Hlavacs and Michael Nussbaumer

University of Vienna, Research Group Entertainment Computing,
Lenaugasse 2/8, 1080 Vienna, Austria

{helmut.hlavacs,m.nussbaumer}@univie.ac.at

Abstract. This work presents an optimization tool that finds the op-
timal number of threads for multi-thread data-flow software. Threads
are assumed to encapsulate parallel executable key functionalities, are
connected through finite capacity queues, and require certain hardware
resources. We show how a combination of measurement and calculation,
based on queueing theory, leads to an algorithm that recursively deter-
mines the best combination of threads, i.e. the best configuration of the
multi-thread data-flow software on a given host. The algorithm proceeds
on the directed graph of a queueing network that models this software.
Experiments on different machines verify our optimization approach.

Keywords: Software Optimization, Performance Optimization, Multi-
thread Software.

1 Introduction

The trend to many cores inside CPUs enables software engineering towards con-
currency. Software is split up in atomic actions that can run in parallel. This
may considerably speed up computation, but also causes extra overhead through
thread coordination for both, the operation system and also the software engi-
neer. Developing software made of several threads is much more complicated
than creating an old-fashioned single thread software. One fundamental prob-
lem of the developer might be to find the right strategy for determining the
optimal number of threads.

In this work we use the term host for a server hardware platform with a fixed
number of cores. Nodes are specified as tasks of the queueing network software
and build the data-flow graph. A thread executes node tasks. Each node can
have multiple threads that are executing the nodes tasks in parallel. The overall
situation is that we want to find the optimal number of threads per node, with
the side constraint, that there can only be as many threads as cores available on
the host, because each thread runs on a dedicated core.

This paper discusses an approach to use a combination of analytical modeling
techniques and measurements to find an optimal configuration of threads on a
given host by iteratively increasing the number of threads. The application area

N. Thomas (Ed.): EPEW 2011, LNCS 6977, pp. 102–116, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



Optimization for Multi-thread Data-Flow Software 103

is software following the data-flow paradigm, in our case a commercial tool that
computes and persists call data from a telecom network.

Section 2 of this paper presents related work. In Section 3 an example multi-
thread data-flow software is introduced, an analytical model is introduced, and
theoretical optimization is explained. Section 4 presents our optimization ap-
proaches to find the optimal configuration for multi-thread data-flow software.
Finally, Section 5 presents experiments conducted on two SUN machines with
a real queueing network software, and compares them to a solely analytical
approach.

2 Related Work

In the past there have been several approaches for adapting software to various
multi-computers, in order to optimize the performance.

FFTW [1] is a free software library that computes the Discrete Fourier Trans-
form (DFT) and its various special cases. It uses a planner to adapt its algorithms
to the hardware in order to maximize performance. The FFTW planner works
by measuring the actual run time of many different plans and by selecting the
fastest one.

The project SPIRAL [2] aims at automatically generating high performance
code for linear Digital Signal Processing (DSP) transforms, tuned to a given plat-
form. SPIRAL implements a feedback-driven optimizer that intelligently gener-
ates and explores algorithmic and implementation choices to find the best match
to the computer’s micro architecture.

The Automatically Tuned Linear Algebra Software (ATLAS) [3] aims at au-
tomatically generating code that provides the best performance for matrix mul-
tiplication on a given platform by finding the cache-optimal variant.

In [4] an algorithm is developed for finding the nearly best configuration for a
Web system. Up to 500 emulated clients generate traffic for various trading op-
erations like buy or sell. Optimal configurations are found iteratively, depending
on the number of threads and the cache size.

The technology Grand Central Dispatch1 (GCD) by Apple enables to use
multicore processors more easily. Firstly released in the Mac OS X 10.6, GCD is
implemented by the library libdispatch2 . GCD is a scheduler for tasks organized
in a queuing system and acts like a thread manager that queues and schedules
tasks for parallel execution on processor cores.

In [5] a queueing network model with finite/single capacity queues and block-
ing after service discipline is used to model software architectures; more exactly
the synchronization constraints and synchronous communication between soft-
ware components. The information flow (trace) between components is analyzed
to identify the kind of communication (fork, join) and reveal the interaction
pairs among components that enables to model a queueing network. This way a
performance model for a specific software architecture can be derived.
1 http://www.apple.com/macosx/technology/#grandcentral
2 http://libdispatch.macosforge.org

http://www.apple.com/macosx/technology/#grandcentral
http://libdispatch.macosforge.org


104 H. Hlavacs and M. Nussbaumer

3 Analytical Model

The system under investigation is a commercial product called Data Flow Engine
(DFE) for processing and persisting call data stemming from standard telecom
networks. In an industrial cooperation, our task was to find automatic ways for
analyzing the performance of the software, and adapt the software to different
hardware platforms and workload situations. The software in some sense should
utilize the hardware in some optimized way, for example for maximizing the
throughput, but also utilize only as much hardware as needed, for example for
optimizing the energy consumption if this is supported by the platform.

Data describing call state changes like calling, canceling etc. is represented by
tickets or packets being sent from the telecom infrastructure to the software that
subsequently receives, extracts, converts, and stores the incoming packets. The
software itself follows a data-flow approach, organizing its tasks into a network
of processing nodes (Fig. 1). Queues buffer the output for succeeding nodes and
incoming tickets pass the graph and visit each node once. Since these nodes tech-
nically are lightweight processes (threads), they can be replicated for splitting
the load. Nodes model atomic actions, but several instances of a node can exist
as threads.

Currently defined nodes are:

– The Decoder node takes packets from its queue, extracts the data, and for-
wards it to the next node’s queue. Hence, the extraction can be done in
parallel by several nodes. A Decoder can be replicated, each Decoder for-
wards the extracted data to the same queue.

– The Converter node takes extracted data from its queue, converts it into a
format appropriate for storing and forwards it to a Serializer and a Feeder
node. Thus, the extracted and formated data is persisted always twice. Also
conversion can be done in parallel by several threads of the Converter.

– The Serializer node takes data from its queue and stores it to disk. Serializers
may write in parallel, even to different disks.

– The Feeder node takes data from its queue and sends it to a database. Since
the database is assumed to be capable to provide a connection pool, Feeders
may send in parallel.

All nodes require certain CPU time, memory, disk space and disk bandwidth,
and network bandwidth. Thus, the benefit of replicating nodes is limited by the
available hardware. Starting with an initial configuration with one thread per
node, the goal is to find the optimal configuration of threads for a certain host.

The main idea is to sequentially add new threads for over-utilized nodes un-
til an optimization goal is reached. For that reason, a queueing network, as
base for an analytical model [6–9] for describing the multi-thread software, is
shown in Fig. 1 as an open queueing network consisting of 4 queues. Open in the
sense that jobs come from an external source, are serviced by an arbitrary num-
ber of servers inside the network and eventually leave the network. Further, the



Optimization for Multi-thread Data-Flow Software 105

Fig. 1. Multi-thread software modeled as queueing network

suggested queueing network is aperiodic, because no job visits a server twice,
the flow goes to one direction. The queueing discipline is always First-Come,
First-Served (FCFS).

An external source sends events with rate λS to the M/M/k/B Decoder queue
whereas the arrival process (M/././.) is Markovian and follows a Poisson process
[10] with independent identically distributed (iid) and exponentially interarrival
times 1/λ, which postulates that the next arrival at t+1 is completely indepen-
dent from the arrival at t. The use of Poisson arrival is motivated by the fact
that the workload source consists of possibly millions of independent sources
(callers) who create call data independently from each other.

The service time 1/μ of each server k is independent from the arrival pro-
cess and iid and exponentially distributed (memoryless) with parameter μ and
therefore the departure process (./M/./.) is also Markovian. The queue capacity
(buffers) is defined by parameter B. An arrival reaching a full queue is blocked.
This can be avoided by increasing the queue size B, decreasing the arrival rate
λ, or increasing the number of servers k and so increasing the joint service rate
μ. This holds also for the Converter, Feeder, and Serializer queues.

After the data is extracted by the Decoder, it is forwarded with rate λD to the
Converter queue. The Converter then converts the data to the file and database
formats and forwards it to the corresponding queues with rate λC . The Feeder
sends the data to the database with rate μF whereas the Serializer writes data
to disk with rate μS .

For each node in the graph, there is a race between λ and μ in the sense that
under the assumption λ ≤ μ for the utilization ρ and given number of servers
(i.e., in our case threads) k in that node, the following must hold:

ρ =
λ

kμ
≤ 1 , (1)

that leads to a stable node: all jobs in the node’s queue can eventually be worked
out. Due to different nodes, the bottleneck is the node where λ > μ. For find-
ing the best configuration of the queueing network (see Fig. 1), the following
performance measures [6–9] are considered for the nodes Decoder, Converter,
Serializer and Feeder.



106 H. Hlavacs and M. Nussbaumer

The utilization ρ from Equ. (1) of a particular node is the base for most other
measures. The probability Pn of n jobs in the node is given by

Pn =
(kρ)n

n!
P0 for 0 ≤ n < k (2)

Pn =
kkρn

k!
P 0

for k ≤ n ≤ B and B ≥ k (3)

where k is the number of servers, B the number of buffers (slots in the queue
that can be set to a sufficient large number), and P0 the probability of no jobs
in the node, which for k = 1 is

P0 =
1 − ρ

1 − ρB+1
for ρ �= 1 (4)

P0 =
1

B + 1
for ρ = 1 (5)

and for k > 1

P0 =

(
1 +

(1 − ρ)B−k+1(kρ)k

k!(1 − ρ)
+

k−1∑
n=1

(kρ)n

n!

)−1

. (6)

The expected number of jobs Es in a node, for k = 1 is

Es =
ρ

1 − ρ
− (B + 1)ρB+1

1 − ρB+1
(7)

and for k > 1

Es =
B∑

n=1

npn (8)

where the expected number of jobs in a queue Eq for k = 1 is

Eq =
ρ

1 − ρ
− ρ

1 + BρB

1 − ρB+1
(9)

and for k > 1

Eq =
B∑

n=k+1

(n − k)pn (10)

Since we have queues with finite buffers B, some traffic is blocked. The initial
traffic that reaches the queueing network is not equal to the traffic that passes
through the queueing network. Reduced to a single node this means that λ
depends on a certain blocking probability Pb. This leads to the effective arrival
rate λ′

λ′ = λ(1 − Pb)



Optimization for Multi-thread Data-Flow Software 107

where the blocking probability Pb = PB , i.e. the probability of B jobs in a node.
The loss rate ε is

ε = λPB (11)

and the effective utilization ρ′ is

ρ′ =
λ′

kμ

again with k servers. Next, the mean response time R of a node is

R =
Es

λ′ (12)

and the mean waiting time W of a job in the queue is

W =
Eq

λ′ (13)

Finally, the probability that the buffers of a node are all occupied is denoted by

Pk =

(kρ)k

k!
k∑

j=0

(kρ)j

j!

(14)

Configurations of the queueing network can be evaluated according to these
measures. An optimization algorithm, presented in Section 4.1, determines the
best configuration.

4 Optimization Approaches

The focus of our work is to find the optimal configuration of a multi-thread
data-flow software for a specific host. A configuration is specified as a vector of
n tuples with

(k1 − . . . − ki − . . . − kn) (15)

where ki denotes the number of threads of node i. With the constraint of

n∑
i=1

ki ≤ c (16)

where c is the number of available (virtual) cores on a specific host. E.g.: The
initial configuration of Decoder, Converter, Serializer and Feeder nodes (1-1-
1-1) contains one thread per node. Optimization is done recursively by adding
threads to over-utilized nodes with two optimization goals:



108 H. Hlavacs and M. Nussbaumer

– Consolidation. With optimization towards consolidation a desired arrival
rate is given and the tool determines the minimum number of threads re-
quired to ensure that all nodes are below a predefined utilization threshold.
With a constant external arrival rate only the number of threads of an over-
utilized node with utilization ≥ limU (0 < limU < 1) will be incremented
for splitting load among available cores as evenly as possible.

– Throughput. With optimization towards throughput we start with the lowest
arrival rate of one job per second and the tool increases the arrival rate step-
wise until one node exceeds the predefined utilization threshold. Then the
number of the corresponding threads is increased as long as the utilization is
below the threshold. Again, the arrival rate will be increased and optimiza-
tion goes on as long as no hardware limit is reached. With 0 < extARInc < 1
the external arrival rate is increased for each new configuration by extARInc
as long as the maximum utilized node does not reach limU . For the maximum
possible number of threads the highest possible throughput is determined.

For calculating the best configuration of nodes, based on a host’s resources (for
example given by Table 1) the number of CPU cores is the upper bound for
the number of nodes that can run in parallel. It is assumed that each node is
executed as single thread on a dedicated core and since core sharing is ignored for
now, as many nodes as free cores available are possible. Memory, disk space and
speed, and network bandwidth are shared by all nodes and are the constraints
for optimization. When a configuration exceeds given resources, the algorithm
terminates.

Table 1. Resources of a hypothetical host

Resource Type Quantitiy

CPU cores (#) 32

Memory (MB) 32000

Disk space (MB) 100000

Disk speed (MB/s) 30

Network (Mbit/s) 100

4.1 Optimization Algorithm

Our first approach in finding the optimal configuration of threads for the pro-
posed queueing network software was to implement the aforementioned perfor-
mance metrics. We therefore created a Java3 test tool that calculates all the
necessary metrics and recursively adds threads to over-utilized nodes.

The optimization process of the calculation module can be described as
follows:

3 http://java.sun.com

http://java.sun.com


Optimization for Multi-thread Data-Flow Software 109

1. The calculation module uses parameters like the external arrival rate, the
service rates for each node, the queue sizes for each node and the host’s
hardware details.

2. The calculation module starts with an initial configuration of one thread per
node.

3. The calculation module calculates all the performance metrics mentioned in
the previous section.

4. The process is terminated if a utilization goal is reached or hardware restric-
tions are met.

5. Otherwise the calculation module increases the most over-utilized node (the
first node that is utilized more than e.g.: 80%).

6. Goto step 3.

4.2 Real Measurements

Our second approach uses a combination of the previously mentioned calculation
module and a measurement approach. Basically, the analytical approach can use
hypothetical input data (e.g.: host resources and node service rates) to derive
an optimal configuration for the given setup. The goal of our work is to find an
optimal solution for a given server software on a specific host. Therefore, another
Java module, the measurement module, was developed.

The optimization process of both the calculation and measurement module
can be described as follows:

1. The measurement module creates artificial tasks (e.g.: writing data to a file,
writing data into a database, data modifications and so forth).

2. These artificial tasks, which should be as close to the tasks of the real queue-
ing network software (e.g.: the DFE) as possible, are assigned to artificial
nodes.

3. The measurement module continuously executes the given tasks on a real
host and measures the service rate for each node.

4. The measurement module also automatically finds out important hardware
specifications of the tested host.

5. The measured service rates, along with the hardware specifications of the
tested host are used by the calculation module to recursively find the optimal
configuration of the queueing network software for a specific host.

By measuring the service rate on the tested machine, the optimization process
now finds the optimal configuration on a given host. In a previously published
paper, experiments conducted with the calculation and measurement module
are described in more detail in [11]. The focus of this paper, however, is the
comparison of the results of our approach with the true optimum configuration
for two server machines. These true optimum configurations are derived from
experiments conducted with the actual DFE software installed on two server
machines (see Section 5).



110 H. Hlavacs and M. Nussbaumer

5 Experiments

To validate our optimization approach a testing environment was set up and
experiments were conducted. Therefore, the queueing network software was in-
stalled on two hosts (Goedel and Zerberus).

The first host Goedel is a SUN Fire v40z with four dual-core AMD Opteron
processors Model 875, each core at 2.2 GHz, has 24 GB of main memory, five 300
GB Ultra320 SCSI HDs, 10/100/1000 Mb/s Ethernet, and runs Linux 2.6.16.60-
0.42.7.

The second host Zerberus is a Sun SPARC Enterprise T5220, model SED-
PCFF1Z with a SPARC V9 architecture (Niagara 2) and a Sun UltraSPARC
T2 eight-core processor, each core at 1.2 Ghz and with Chip Multithreading
Technology (CMT) for up to 64 simultaneous threads, 32 GB of main memory,
two 146 GB Serial Attached SCSI disks, 10/100/1000 Mb/s Ethernet, and runs
SunOS 5.10 Generic 127111-11.

Furthermore, an Oracle Database was installed on host Zerberus. A ticket
generator imitating VoIP devices and sending Diameter tickets to the queueing
network software was installed on several test clients.

The procedure of the experiments can be summarized as follows:

– The queueing network software was started with the initial configuration.
– The ticket generator repeatedly sends Diameter tickets to the queueing net-

work software with a given external arrival rate.
– After an experiment cycle, software-internal performance metrics are used

to determine the most over-utilized node, which will be increased by one.
– The queueing network software is reconfigurated and restarted and a new

experiment cycle is started.
– The experiments continue until the optimal configuration is found.

Zerberus. The first experiments were conducted with the actual queueing net-
work software software installed on host Zerberus. As mentioned before, host
Zerberus has an Oracle database installed locally and has the possibility to start
up to 64 parallel threads.

Again, an over-utilization occurs if the node is utilized more than 80%. There-
fore, nodes that show a utilization of over 80% will be increased by one thread.

Table 2 shows the service rate and the utilization of all four nodes with an
external arrival rate of 1000 tickets per second. This first experiment makes it
obvious that the Feeder node is the bottleneck of the system, only managing an
average number of 66 tickets per second. Therefore the adaption tool suggests
that the Feeder node has to be increased by one, creating two Feeder threads at
the next experiment.

In the next few steps it became obvious that even though the Feeder node was
recursively extended, the service rate did not increase in the same way. Table
3 shows that the mean service rate of one Feeder thread decreases with every
newly added Feeder thread. Of course, the total service rate of all Feeder nodes
does not decrease, but adding new Feeder threads does not improve the total



Optimization for Multi-thread Data-Flow Software 111

Table 2. Initial config. (1-1-1-1) on host Zerberus (ext. arrival rate: 1000 tickets/s).

Service Rate [tickets/s] Utilization [%]

Decoder 10658 9.38

Converter 12147 8.23

Serializer 2061 48.52

Feeder 66 100.00

service rate of all Feeder nodes enough. Even with the maximum number of 61
threads, the Feeder node stays the systems bottleneck.

Table 3. Service rates of the Feeder node with different configurations on host Zerberus

Mean Service Rate

Configuration Individual Total

(1-1-1-1) 66 66

(1-1-1-2) 44 88

(1-1-1-4) 34 136

(1-1-1-10) 7 70

(1-1-1-20) 5 100

(1-1-1-61) 2 122

Table 4 shows that with the final configuration (one Decoder, one Converter,
one Serializer and 61 Feeder nodes) all other nodes are of course still under-
utilized. This leads to the conclusion that the Feeder node should indeed be
fixed to one thread per node. The solution to this problem, as mentioned before,
could be to allocate a large queue to the Feeder node. By doing that, the node
can eventually handle queued tickets when the external arrival rate decreases.

Table 4. Final config. (1-1-1-61) on host Zerberus (ext. arrival rate: 1000 tickets/s).

Utilization [%]

Decoder 9.25

Converter 9.67

Serializer 48.95

Feeder 100.00

The final experiment therefore used a Feeder node fixed to one thread per
node. Table 5 shows that an initial configuration of one thread per each node
cannot handle an external arrival rate of 2000 tickets per second without over-
stepping an utilization of 80%, because the Serializer node is already at a



112 H. Hlavacs and M. Nussbaumer

utilization level of 97.04%. Increasing the number of threads per node (without
taken the Feeder node into account) the final and optimal configuration can
handle an external arrival rate of 66900 tickets per second.

Table 5. Initial and final configuration on host Zerberus, with a fixed Feeder node

Initial Config. Optimal Config.

2000 tickets/s 66900 tickets/s

Node Util. [%] Threads Util. [%] Threads

Decoder 18.77 1 79.11 9

Converter 16.46 1 70.44 9

Serializer 97.04 1 79.93 45

Feeder (fixed) 100.00 1 100.00 1

Table 5 shows that at an external arrival rate of 66900 tickets per second, all
nodes are under a utilization level of 80%. Of course it should be noted, that
the Feeder node is still highly over-utilized and can only handle about 70 tickets
per second. Given the fact that the Feeder node and therefore the database is
the natural bottleneck, it is necessary to assign a very large queue to the Feeder
node, to minimize the loss rate.

Goedel. To compare the results and maybe find a different optimal configura-
tion the same experiments were conducted with the queueing network software
installed on host Goedel. With four dual-core processors, a maximum amount of
8 threads can be started. As mentioned before, host Goedel has no local database
installed and uses the Oracle database installed on host Zerberus.

Table 6 shows the results of the first experiment. At an external arrival rate
of 1000 tickets per second, the Feeder node is again the systems bottleneck.
Table 6 also shows that compared to host Zerberus, the Decoder, Converter and
Serializer node show a higher service rate during the initial experiment.

Table 6. Initial config. (1-1-1-1) on host Goedel (ext. arrival rate: 1000 tickets/s).

Service Rate [tickets/s] Utilization [%]

Decoder 32617 3.07

Converter 26058 3.84

Serializer 5202 19.22

Feeder 105 100.00

To start the optimization process, the Feeder node again has to be increased.
Table 7 shows that on host Goedel the individual service rate of one Feeder thread



Optimization for Multi-thread Data-Flow Software 113

does, to some extent, stay the same, which leads to the fact that the total service
rate of all Feeder threads is indeed slowly increasing. Table 7 shows that one
Feeder thread can handle 105 tickets per second, while the final configuration of
5 Feeder threads can handle 350 tickets per second.

Table 7. Service rates of the Feeder node with different configurations on host Goedel

Mean Service Rate

Configuration Individual Total

(1-1-1-1) 105 105

(1-1-1-2) 79 158

(1-1-1-3) 81 243

(1-1-1-4) 70 280

(1-1-1-5) 70 350

Given the fact that the total service rate of all Feeder threads is increasing,
it would make sence to stick to this optimization approach. Table 8 therefore
shows an initial and optimal configuration on host Goedel. With an external
arrival rate of 280 tickets per second the Feeder node of the initial configuration
is over-utilized, but with the optimal configuration of 5 threads, the Feeder node
is able to stay under the utilization threshold of 80%.

Table 8. Initial and final configuration on host Goedel

Initial Config. Optimal Config.

280 tickets/s 280 tickets/s

Node Util. [%] Threads Util. [%] Threads

Decoder 0.86 1 0.97 1

Converter 1.07 1 1.41 1

Serializer 5.38 1 4.04 1

Feeder 100.00 1 80.00 5

Table 9 shows the results of the experiments, if the software developer decides
to fix the Feeder node to one thread per node. At an initial configuration of one
thread per node and an external arrival rate of 5200 tickets per second, the Seri-
alizer node would exceed the utilization threshold of 80%. After the optimization
process, the system is able to handle up to 15600 tickets per second with the
optimal queueing network software configuration (one Decoder node, two Con-
verter nodes, four Serializer nodes and one Feeder node), without exceeding the
utilization threshold.



114 H. Hlavacs and M. Nussbaumer

Table 9. Initial and final configuration on host Goedel, with a fixed Feeder node

Initial Config. Optimal Config.

5200 tickets/s 15600 tickets/s

Node Util. [%] Threads Util. [%] Threads

Decoder 15.94 1 52.10 1

Converter 19.96 1 75.02 2

Serializer 99.96 1 79.89 4

Feeder (fixed) 100.00 1 100.00 1

5.1 Verification of the Analytical Approach

To verify the analytical approach we used the average service rates for each node
derived from the experiments done on host Zerberus and host Goedel (see Table
10) and started the calculation module one more time.

Table 10. Mean service rates of both tested hosts for each node type

Mean Service Rates

Node Zerberus Goedel

Decoder 9766 30055

Converter 10430 18672

Serializer 1987 6146

Feeder 28 94

Table 11 shows that starting the calculation module with optimization to-
wards throughput, and using the average service rates derived out of the exper-
iments, both, experiments and the calculation module deliver the same optimal
configuration. On host Zerberus and host Goedel a normal optimization would
only increase the number of Feeder nodes. Due to different hosts and therefore
different node service rates, an optimal configuration with a fixed Feeder node
would lead to an optimal configuration of 9 Decoder nodes, 9 Converter nodes,
45 Serializer nodes and 1 Feeder node on host Zerberus, and 1 Decoder node, 2
Converter nodes, 4 Serializer nodes and 1 Feeder node on host Goedel.

These four verifications show the importance of the service rates and if there is
no possibility to derive real service rates from an actual software, it is necessary
to analyze the used nodes in every detail. As mentioned before, the measurement
module is using simulated nodes to derive artificial service rates. Therefore, the
simulated tasks have to be as close as they can get to the actual performed tasks
of the tested queueing network software.



Optimization for Multi-thread Data-Flow Software 115

Table 11. Optimal configuration of threads for both hosts

Zerberus Goedel

Optimal Configuration Normal Fixed Feeder Normal Fixed Feeder

Experiments (1-1-1-61) (9-9-45-1) (1-1-1-5) (1-2-4-1)

Analytical Model (1-1-1-61) (9-9-45-1) (1-1-1-5) (1-2-4-1)

5.2 Removing the Bottleneck

In the above examples we see that the connection to our database is a seri-
ous bottleneck that hinders further improvements. Further optimization would
therefore try to improve the database connection throughout, e.g., by increasing
the network bandwidth, installing new drivers, or installing replicated databases.
Consider a hypothetical case where on Zerberus the service rate of the Feeder
would be improved by a factor of 5, 10, or even 15.

Table 12. Service rates, number of threads, and utilization in a hypothetical scenario
with Feeder being faster by a factor of 5x, 10x, or 15x. The system throughput is
increased to 13400, 23000, and 29500 resp.

5x, EAR: 13400 10x, EAR: 23000 15x, EAR: 29500

SR T Util. [%] SR T Util. [%] SR T Util. [%]

Decoder 10658 2 62.86 10658 3 71.93 10658 4 69.2

Converter 12147 2 55.16 12147 3 63.12 12147 4 60.71

Serializer 2061 9 72.24 2061 14 79.71 2061 18 79.52

Feeder 330 51 79.62 660 44 79.2 990 38 78.42

Table 12 shows that improving the bottleneck indeed results in a significant
improvement of the overall throughput, while keeping all nodes at moderate
utilization. Still most threads are invested into the Feeder, which is still the
main bottleneck.

6 Conclusion

This work showed how queueing theory can help finding the best configuration
of a multi-thread software. By modeling such a software as queueing network
consisting of nodes with certain functionalities, optimization towards throughput
is possible. As a result the optimal number of threads per node is determined to
efficiently use available CPU cores, memory, disk space and speed, and network
bandwidth. Experiments evaluated our methodology.

The basic idea behind our three approaches is an online optimization tool
that can be placed in front of the queueing network software. After measuring



116 H. Hlavacs and M. Nussbaumer

the respective service times of the nodes, we use an analytical queueing network
to find the optimal number of threads for each node.

After that, the data-flow software can go online. The optimization tool should
then be able to detect changes in the external arrival rate and – if necessary –
recalculate the optimal configuration.

We also conducted several other experiments using a different setup of the
queueing network, to see if the proposed approaches can be used for other multi-
thread data-flow software. The structure of the queueing network, as well as the
used nodes can easily be changed or enhanced, without knowledge of the Java
code. Therefore, the mentioned approaches can be used for other multi-thread
data-flow software as well.

References

1. Frigo, M., Johnson, S.G.: The design and implementation of FFTW3. Proceedings
of the IEEE 93, 216–231 (2005),
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.136.7045

2. Püschel, M., Moura, J.M.F., Johnson, J., Padua, D., Veloso, M., Singer, B., Xiong,
J., Franchetti, F., Gacic, A., Voronenko, Y., Chen, K., Johnson, R.W., Rizzolo, N.:
SPIRAL: Code Generation for DSP Transforms. Proceedings of the IEEE, Special
Issue on Program Generation, Optimization, and Adaptation 93(2), 232–275 (2005)

3. Whaley, R.C., Dongarra, J.J.: Automatically tuned linear algebra software. In:
Supercomputing 1998: Proceedings of the 1998 ACM/IEEE Conference on Super-
computing (CDROM), pp. 1–27. IEEE Computer Society, Washington, DC (1998)

4. Osogami, T., Kato, S.: Optimizing system configurations quickly by guessing at
the performance. SIGMETRICS Perform. Eval. Rev. 35(1), 145–156 (2007)

5. Balsamo, S., Person, V.D.N., Inverardi, P.: A review on queueing network mod-
els with finite capacity queues for software architectures performance prediction.
Performance Evaluation 51(2-4), 269–288 (2003)

6. Jain, R.K.: The Art of Computer Systems Performance Analysis: Techniques for
Experimental Design, Measurement, Simulation, and Modeling. Wiley, Chichester
(1991), http://www.cse.wustl.edu/~jain/books/perfbook.htm

7. Zukerman, M.: Introduction to Queueing Theory and Stochastic Teletraffic Models.
Zukerman (2009), http://www.ee.cityu.edu.hk/~zukerman/classnotes.pdf

8. Bolch, G., Greiner, S., de Meer, H., Trivedi, K.S.: Queueing Networks and Markov
Chains: Modeling and Performance Evaluation with Computer Science Applica-
tions, 2nd edn. Wiley Blackwell (May 2006),
http://www4.informatik.uni-erlangen.de/QNMC

9. Kobayashi, H., Mark, B.L.: System Modeling And Analysis - Foundations of Sys-
tem Performance Evaluation, 1st edn., vol. 1. Prentice-Hall, Englewood Cliffs
(2008), http://www.princeton.edu/kobayashi/Book/book.html

10. Agresti, A.: Categorical Data Analysis, 2nd edn. Wiley-Interscience, Hoboken
(2002)

11. Weidlich, R., Nussbaumer, M., Hlavacs, H.: “Optimization towards consolidation
or throughput for multi-thread software. In: International Symposium on Parallel
Architectures, Algorithms and Programming, pp. 161–168 (2010)

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.136.7045
http://www.cse.wustl.edu/~jain/books/perfbook.htm
http://www.ee.cityu.edu.hk/~zukerman/classnotes.pdf
http://www4.informatik.uni-erlangen.de/QNMC
http://www.princeton.edu/kobayashi/Book/book.html

	Optimization for Multi-thread Data-Flow
Software
	Introduction
	Related Work
	Analytical Model
	Optimization Approaches
	Optimization Algorithm
	Real Measurements

	Experiments
	Verification of the Analytical Approach
	Removing the Bottleneck

	Conclusion
	References




