Multiboot Specification version 0.6.96

Next: Overview, Up: (dir)

Multiboot Specification

This file documents Multiboot Specification, the proposal for the boot sequence standard. This edition documents version 0.6.96.

Copyright © 1995,96 Bryan Ford <baford@cs.utah.edu>
Copyright © 1995,96 Erich Stefan Boleyn <erich@uruk.org>

Copyright © 1999,2000,2001,2002,2005,2006,2009,2010 Free Software Foundation, Inc.

Permission is granted to make and distribute verbatim copies of this manual provided the copyright notice and this permission notice are preserved
on all copies.

Permission is granted to copy and distribute modified versions of this manual under the conditions for verbatim copying, provided also that the entire
resulting derived work is distributed under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another language, under the above conditions for modified versions.

Overview

Terminology

Specification

Examples

History

Invoking mbchk: How to use the Multiboot checker
Index

Next: Terminology, Previous: Top, Up: Top

1 Introduction to Multiboot Specification

This chapter describes some rough information on the Multiboot Specification. Note that this is not a part of the specification itself.

Motivation

Architecture

Operating_systems

Boot sources

Boot-time configuration
Convenience to operating systems
Boot modules

Next: Architecture, Up: Overview

1.1 The background of Multiboot Specification

Every operating system ever created tends to have its own boot loader. Installing a new operating system on a machine generally involves installing a whole new
set of boot mechanisms, each with completely different install-time and boot-time user interfaces. Getting multiple operating systems to coexist reliably on one
machine through typical chaining mechanisms can be a nightmare. There is little or no choice of boot loaders for a particular operating system — if the one that
comes with the operating system doesn't do exactly what you want, or doesn't work on your machine, you're screwed.

While we may not be able to fix this problem in existing proprietary operating systems, it shouldn't be too difficult for a few people in the free operating system
communities to put their heads together and solve this problem for the popular free operating systems. That's what this specification aims for. Basically, it
specifies an interface between a boot loader and a operating system, such that any complying boot loader should be able to load any complying operating system.
This specification does not specify how boot loaders should work — only how they must interface with the operating system being loaded.

Next: Operating systems, Previous: Motivation, Up: Overview

1.2 The target architecture

This specification is primarily targeted at pc, since they are the most common and have the largest variety of operating systems and boot loaders. However, to the
extent that certain other architectures may need a boot specification and do not have one already, a variation of this specification, stripped of the x86-specific
details, could be adopted for them as well.

Next: Boot sources, Previous: Architecture, Up: Overview

1.3 The target operating systems

This specification is targeted toward free 32-bit operating systems that can be fairly easily modified to support the specification without going through lots of
bureaucratic rigmarole. The particular free operating systems that this specification is being primarily designed for are Linux, the kernels of FreeBSD and
NetBSD, Mach, and VSTa. It is hoped that other emerging free operating systems will adopt it from the start, and thus immediately be able to take advantage of
existing boot loaders. It would be nice if proprietary operating system vendors eventually adopted this specification as well, but that's probably a pipe dream.

https://www.gnu.org/software/grub/manual/multiboot/multiboot.html#dir

Next: Boot-time configuration, Previous: Operating systems, Up: Overview

1.4 Boot sources

It should be possible to write compliant boot loaders that load the OS image from a variety of sources, including floppy disk, hard disk, and across a network.

Disk-based boot loaders may use a variety of techniques to find the relevant OS image and boot module data on disk, such as by interpretation of specific file
systems (e.g. the BSD/Mach boot loader), using precalculated blocklists (e.g. LILO), loading from a special boot partition (e.g. OS/2), or even loading from
within another operating system (e.g. the VSTa boot code, which loads from DOS). Similarly, network-based boot loaders could use a variety of network
hardware and protocols.

It is hoped that boot loaders will be created that support multiple loading mechanisms, increasing their portability, robustness, and user-friendliness.

Next: Convenience to operating systems, Previous: Boot sources, Up: Overview

1.5 Configure an operating system at boot-time

It is often necessary for one reason or another for the user to be able to provide some configuration information to an operating system dynamically at boot time.
While this specification should not dictate how this configuration information is obtained by the boot loader, it should provide a standard means for the boot
loader to pass such information to the operating system.

Next: Boot modules, Previous: Boot-time configuration, Up: Overview
1.6 How to make OS development easier

OS images should be easy to generate. Ideally, an OS image should simply be an ordinary 32-bit executable file in whatever file format the operating system
normally uses. It should be possible to nm or disassemble OS images just like normal executables. Specialized tools should not be required to create OS images in
a special file format. If this means shifting some work from the operating system to a boot loader, that is probably appropriate, because all the memory consumed
by the boot loader will typically be made available again after the boot process is created, whereas every bit of code in the OS image typically has to remain in
memory forever. The operating system should not have to worry about getting into 32-bit mode initially, because mode switching code generally needs to be in
the boot loader anyway in order to load operating system data above the 1MB boundary, and forcing the operating system to do this makes creation of OS images
much more difficult.

Unfortunately, there is a horrendous variety of executable file formats even among free Unix-like pc-based operating systems — generally a different format for
each operating system. Most of the relevant free operating systems use some variant of a.out format, but some are moving to ELF. It is highly desirable for boot
loaders not to have to be able to interpret all the different types of executable file formats in existence in order to load the OS image — otherwise the boot loader
effectively becomes operating system specific again.

This specification adopts a compromise solution to this problem. Multiboot-compliant OS images always contain a magic Multiboot header (see OS image
format), which allows the boot loader to load the image without having to understand numerous a.out variants or other executable formats. This magic header
does not need to be at the very beginning of the executable file, so kernel images can still conform to the local a.out format variant in addition to being Multiboot-
compliant.

Previous: Convenience to operating systems, Up: Overview

1.7 Boot modules

Many modern operating system kernels, such as Mach and the microkernel in VSTa, do not by themselves contain enough mechanism to get the system fully
operational: they require the presence of additional software modules at boot time in order to access devices, mount file systems, etc. While these additional
modules could be embedded in the main OS image along with the kernel itself, and the resulting image be split apart manually by the operating system when it
receives control, it is often more flexible, more space-efficient, and more convenient to the operating system and user if the boot loader can load these additional
modules independently in the first place.

Thus, this specification should provide a standard method for a boot loader to indicate to the operating system what auxiliary boot modules were loaded, and
where they can be found. Boot loaders don't have to support multiple boot modules, but they are strongly encouraged to, because some operating systems will be
unable to boot without them.

Next: Specification, Previous: Overview, Up: Top

2 The definitions of terms used through the specification

must
We use the term must, when any boot loader or OS image needs to follow a rule — otherwise, the boot loader or OS image is not Multiboot-compliant.
should
We use the term should, when any boot loader or OS image is recommended to follow a rule, but it doesn't need to follow the rule.
may
We use the term may, when any boot loader or OS image is allowed to follow a rule.
boot loader
Whatever program or set of programs loads the image of the final operating system to be run on the machine. The boot loader may itself consist of several
stages, but that is an implementation detail not relevant to this specification. Only the final stage of the boot loader — the stage that eventually transfers
control to an operating system — must follow the rules specified in this document in order to be Multiboot-compliant; earlier boot loader stages may be
designed in whatever way is most convenient.
OS image
The initial binary image that a boot loader loads into memory and transfers control to start an operating system. The OS image is typically an executable
containing the operating system kernel.
boot module
Other auxiliary files that a boot loader loads into memory along with an OS image, but does not interpret in any way other than passing their locations to
the operating system when it is invoked.

Multiboot-compliant
A boot loader or an OS image which follows the rules defined as must is Multiboot-compliant. When this specification specifies a rule as should or may, a
Multiboot-complaint boot loader/OS image doesn't need to follow the rule.

u8

The type of unsigned 8-bit data.
ul6

The type of unsigned 16-bit data. Because the target architecture is little-endian, ul6 is coded in little-endian.
u32

The type of unsigned 32-bit data. Because the target architecture is little-endian, u32 is coded in little-endian.
u64

The type of unsigned 64-bit data. Because the target architecture is little-endian, u64 is coded in little-endian.

Next: Examples, Previous: Terminology, Up: Top

3 The exact definitions of Multiboot Specification

There are three main aspects of a boot loader/OS image interface:

1. The format of an OS image as seen by a boot loader.
2. The state of a machine when a boot loader starts an operating system.
3. The format of information passed by a boot loader to an operating system.

e OS image format
e Machine state
e Boot information format

Next: Machine state, Up: Specification

3.1 OS image format

An OS image may be an ordinary 32-bit executable file in the standard format for that particular operating system, except that it may be linked at a non-default
load address to avoid loading on top of the pc's I/O region or other reserved areas, and of course it should not use shared libraries or other fancy features.

An OS image must contain an additional header called Multiboot header, besides the headers of the format used by the OS image. The Multiboot header must be
contained completely within the first 8192 bytes of the OS image, and must be longword (32-bit) aligned. In general, it should come as early as possible, and
may be embedded in the beginning of the text segment after the real executable header.

Header layout: The layout of Multiboot header
Header magic fields: The magic fields of Multiboot header

Header address fields
Header graphics fields

Next: Header magic fields, Up: OS image format

3.1.1 The layout of Multiboot header

The layout of the Multiboot header must be as follows:

Offset Type Field Name Note

0 u32 magic required
4 u32 flags required
8 u32 checksum required
12 u3?2 header_addr if flags[16] 1s set
16 u32 load_addr if flags[16] is set

20 u3?2 load_end_addr if flags[16] is set
24 u32 bss_end_addr if flags[16] is set
28 u32 entry_addr if flags[16] is set
32 u32 mode_type if flags[2] is set

36 u3?2 width if flags[2] is set
40 u32 height if flags[2] is set
44 u32 depth if flags[2] is set

The fields ‘magic’, ‘flags’ and ‘checksum’ are defined in Header magic fields, the fields ‘header addr’, ‘load addr’, ‘load end addr’, ‘bss_end_addr’ and
‘entry addr’ are defined in Header address fields, and the fields ‘mode type’, ‘width’, ‘height’ and ‘depth’ are defined in Header graphics fields.

Next: Header address fields, Previous: Header layout, Up: OS image format

3.1.2 The magic fields of Multiboot header

magic
The field ‘magic’ is the magic number identifying the header, which must be the hexadecimal value 0x1BaDB002.

‘flags’
The field ‘f1lags’ specifies features that the OS image requests or requires of an boot loader. Bits 0-15 indicate requirements; if the boot loader sees any of
these bits set but doesn't understand the flag or can't fulfill the requirements it indicates for some reason, it must notify the user and fail to load the OS
image. Bits 16-31 indicate optional features; if any bits in this range are set but the boot loader doesn't understand them, it may simply ignore them and

proceed as usual. Naturally, all as-yet-undefined bits in the ‘£1ags’ word must be set to zero in OS images. This way, the ‘f1lags’ fields serves for version
control as well as simple feature selection.

If bit O in the ‘flags’ word is set, then all boot modules loaded along with the operating system must be aligned on page (4KB) boundaries. Some
operating systems expect to be able to map the pages containing boot modules directly into a paged address space during startup, and thus need the boot
modules to be page-aligned.

If bit 1 in the ‘f1lags’ word is set, then information on available memory via at least the ‘mem_*’ fields of the Multiboot information structure (see Boot
information format) must be included. If the boot loader is capable of passing a memory map (the ‘mmap *’ fields) and one exists, then it may be included
as well.

If bit 2 in the ‘flags’ word is set, information about the video mode table (see Boot information format) must be available to the kernel.

If bit 16 in the ‘flags’ word is set, then the fields at offsets 12-28 in the Multiboot header are valid, and the boot loader should use them instead of the
fields in the actual executable header to calculate where to load the OS image. This information does not need to be provided if the kernel image is in ELF
format, but it must be provided if the images is in a.out format or in some other format. Compliant boot loaders must be able to load images that either are
in ELF format or contain the load address information embedded in the Multiboot header; they may also directly support other executable formats, such as
particular a.out variants, but are not required to.

‘checksum’
The field ‘checksum’ is a 32-bit unsigned value which, when added to the other magic fields (i.e. ‘magic’ and ‘flags’), must have a 32-bit unsigned sum of
Zero.

Next: Header graphics fields, Previous: Header magic fields, Up: OS image format

3.1.3 The address fields of Multiboot header

All of the address fields enabled by flag bit 16 are physical addresses. The meaning of each is as follows:

header addr
Contains the address corresponding to the beginning of the Multiboot header — the physical memory location at which the magic value is supposed to be
loaded. This field serves to synchronize the mapping between OS image offsets and physical memory addresses.

load addr
Contains the physical address of the beginning of the text segment. The offset in the OS 1image file at which to start loading is defined by the offset at which
the header was found, minus (header_addr - load_addr). load_addr must be less than or equal to header_addr.

load end addr
Contains the physical address of the end of the data segment. (load_end_addr - load_addr) specifies how much data to load. This implies that the text and
data segments must be consecutive in the OS image; this is true for existing a.out executable formats. If this field is zero, the boot loader assumes that the
text and data segments occupy the whole OS image file.

bss end addr
Contains the physical address of the end of the bss segment. The boot loader initializes this area to zero, and reserves the memory it occupies to avoid
placing boot modules and other data relevant to the operating system in that area. If this field is zero, the boot loader assumes that no bss segment is
present.

entry addr
The physical address to which the boot loader should jump in order to start running the operating system.

Previous: Header address fields, Up: OS image format
3.1.4 The graphics fields of Multiboot header

All of the graphics fields are enabled by flag bit 2. They specify the preferred graphics mode. Note that that is only a recommended mode by the OS image. Boot
loader may choose a different mode if it sees fit.

The meaning of each is as follows:

mode type
Contains ‘0’ for linear graphics mode or ‘1’ for EGA-standard text mode. Everything else is reserved for future expansion. Note that the boot loader may
set a text mode even if this field contains ‘0’, or set a video mode even if this field contains ‘1’.

width
Contains the number of the columns. This is specified in pixels in a graphics mode, and in characters in a text mode. The value zero indicates that the OS
image has no preference.

height
Contains the number of the lines. This is specified in pixels in a graphics mode, and in characters in a text mode. The value zero indicates that the OS
image has no preference.

depth
Contains the number of bits per pixel in a graphics mode, and zero in a text mode. The value zero indicates that the OS image has no preference.

Next: Boot information format, Previous: OS image format, Up: Specification

3.2 Machine state

When the boot loader invokes the 32-bit operating system, the machine must have the following state:

(3 2

EAX
Must contain the magic value ‘0x2BaDB002’; the presence of this value indicates to the operating system that it was loaded by a Multiboot-compliant boot
loader (e.g. as opposed to another type of boot loader that the operating system can also be loaded from).

EBX
Must contain the 32-bit physical address of the Multiboot information structure provided by the boot loader (see Boot information format).

(3 b

Ccs
Must be a 32-bit read/execute code segment with an offset of ‘0’ and a limit of ‘0xFFFFFFFF’. The exact value is undefined.

(3 b

DS

(3 b

ES

Must be a 32-bit read/write data segment with an offset of ‘0" and a limit of ‘0xFFFFFFFF’. The exact values are all undefined.
‘A20 gate’
Must be enabled.

(3 b

CRO
Bit 31 (PG) must be cleared. Bit O (PE) must be set. Other bits are all undefined.

‘EFLAGS’

Bit 17 (VM) must be cleared. Bit 9 (IF) must be cleared. Other bits are all undefined.

All other processor registers and flag bits are undefined. This includes, in particular:

(3 2

ESP
The OS image must create its own stack as soon as it needs one.

‘GDTR’
Even though the segment registers are set up as described above, the ‘GDTR’ may be invalid, so the OS image must not load any segment registers (even just
reloading the same values!) until it sets up its own ‘GDT’.

‘IDTR’

The OS image must leave interrupts disabled until it sets up its own IDT.

However, other machine state should be left by the boot loader in normal working order, i.e. as initialized by the Bios (or DOS, if that's what the boot loader runs
from). In other words, the operating system should be able to make Bi0s calls and such after being loaded, as long as it does not overwrite the Bios data structures
before doing so. Also, the boot loader must leave the pic programmed with the normal B10s/DOS values, even if it changed them during the switch to 32-bit mode.

Previous: Machine state, Up: Specification

3.3 Boot information format

FIXME: Split this chapter like the chapter “OS image format”.

Upon entry to the operating system, the EBx register contains the physical address of a Multiboot information data structure, through which the boot loader
communicates vital information to the operating system. The operating system can use or ignore any parts of the structure as it chooses; all information passed by
the boot loader is advisory only.

The Multiboot information structure and its related substructures may be placed anywhere in memory by the boot loader (with the exception of the memory
reserved for the kernel and boot modules, of course). It is the operating system's responsibility to avoid overwriting this memory until it is done using it.

The format of the Multiboot information structure (as defined so far) follows:

S +

0 | flags | (required)
P +

4 | mem lower | (present if flags[0] is set)

8 | mem upper | (present if flags[0] is set)
S +

12 | boot device | (present if flags[l] is set)
S +

16 | cmdline | (present if flags[2] is set)
S +

20 | mods count | (present if flags[3] is set)

24 | mods addr | (present if flags[3] is set)
S +

28 - 40 | syms | (present if flags[4] or
| | flags[5] is set)
S +

44 | mmap length | (present if flags[6] is set)

48 | mmap addr | (present if flags[6] is set)
S +

52 | drives length | (present if flags[7] is set)

56 | drives addr | (present if flags[7] is set)
S +

60 | config table | (present if flags[8] is set)
S +

64 | boot loader name | (present if flags[9] is set)
S +

68 | apm table | (present if flags[10] is set)
S +

72 | vbe control info | (present if flags[1ll] is set)

76 | vbe mode info |

80 | vbe mode |

82 | vbe interface seg |

84 | vbe interface off |

86 | vbe interface len |
P +

88 | framebuffer addr | (present if flags[12] is set)

96 | framebuffer pitch |

100 | framebuffer width |

104 | framebuffer height|

108 | framebuffer bpp |

109 | framebuffer type |

110-115 | color_ info |

The first longword indicates the presence and validity of other fields in the Multiboot information structure. All as-yet-undefined bits must be set to zero by the
boot loader. Any set bits that the operating system does not understand should be ignored. Thus, the ‘f1ags’ field also functions as a version indicator, allowing
the Multiboot information structure to be expanded in the future without breaking anything.

If bit 0 in the ‘flags’ word is set, then the ‘mem_*’ fields are valid. ‘mem lower’ and ‘mem upper’ indicate the amount of lower and upper memory, respectively, in

kilobytes. Lower memory starts at address 0, and upper memory starts at address 1 megabyte. The maximum possible value for lower memory is 640 kilobytes.
The value returned for upper memory is maximally the address of the first upper memory hole minus 1 megabyte. It is not guaranteed to be this value.

If bit 1 in the ‘flags’ word is set, then the ‘boot_device’ field is valid, and indicates which Bios disk device the boot loader loaded the OS image from. If the OS
image was not loaded from a Bios disk, then this field must not be present (bit 3 must be clear). The operating system may use this field as a hint for determining
its own root device, but is not required to. The ‘boot_device’ field is laid out in four one-byte subfields as follows:

Fomm TP TP TP +
| part3 | part2 | partl | drive |
Fomm TP TP TP +
Least significant Most significant

The most significant byte contains the Bios drive number as understood by the Bios INT 0x13 low-level disk interface: e.g. 0x00 for the first floppy disk or 0x80
for the first hard disk.

The three remaining bytes specify the boot partition. ‘partl’ specifies the top-level partition number, ‘part2’ specifies a sub-partition in the top-level partition,
etc. Partition numbers always start from zero. Unused partition bytes must be set to OXFF. For example, if the disk is partitioned using a simple one-level DOS
partitioning scheme, then ‘part1’ contains the DOS partition number, and ‘part2’ and ‘part3’ are both OxFF. As another example, if a disk is partitioned first
into DOS partitions, and then one of those DOS partitions is subdivided into several BSD partitions using BSD's disklabel strategy, then ‘part1’ contains the
DOS partition number, ‘part2’ contains the BSD sub-partition within that DOS partition, and ‘part3’ is OxFF.

DOS extended partitions are indicated as partition numbers starting from 4 and increasing, rather than as nested sub-partitions, even though the underlying disk
layout of extended partitions is hierarchical in nature. For example, if the boot loader boots from the second extended partition on a disk partitioned in
conventional DOS style, then ‘part1’ will be 5, and ‘part2’ and ‘part3’ will both be OxFF.

If bit 2 of the ‘f1ags’ longword is set, the ‘cmdline’ field is valid, and contains the physical address of the command line to be passed to the kernel. The
command line is a normal C-style zero-terminated string. The exact format of command line is left to OS developpers. General-purpose boot loaders should
allow user a complete control on command line independently of other factors like image name. Boot loaders with specific payload in mind may completely or
partially generate it algorithmically.

If bit 3 of the ‘f1ags’ is set, then the ‘mods’ fields indicate to the kernel what boot modules were loaded along with the kernel image, and where they can be
found. ‘mods_count’ contains the number of modules loaded; ‘mods_addr’ contains the physical address of the first module structure. ‘mods_count’ may be zero,
indicating no boot modules were loaded, even if bit 3 of ‘flags’ is set. Each module structure is formatted as follows:

L +
0 | mod start |
4 | mod end |
o +
8 | string |
o +
12 | reserved (0) |
o +

The first two fields contain the start and end addresses of the boot module itself. The ‘string’ field provides an arbitrary string to be associated with that
particular boot module; it is a zero-terminated ASCII string, just like the kernel command line. The ‘string’ field may be O if there is no string associated with
the module. Typically the string might be a command line (e.g. if the operating system treats boot modules as executable programs), or a pathname (e.g. if the
operating system treats boot modules as files in a file system), but its exact use is specific to the operating system. The ‘reserved’ field must be set to O by the
boot loader and ignored by the operating system.

Caution: Bits 4 & 5 are mutually exclusive.

If bit 4 in the ‘flags’ word is set, then the following fields in the Multiboot information structure starting at byte 28 are valid:

R +
28 | tabsize |
32 | strsize |
36 | addr |
40 | reserved (0) |
o +

These indicate where the symbol table from an a.out kernel image can be found. ‘addr’ is the physical address of the size (4-byte unsigned long) of an array of
a.out format nlist structures, followed immediately by the array itself, then the size (4-byte unsigned long) of a set of zero-terminated asc strings (plus
sizeof(unsigned long) in this case), and finally the set of strings itself. ‘tabsize’ is equal to its size parameter (found at the beginning of the symbol section), and
‘strsize’ is equal to its size parameter (found at the beginning of the string section) of the following string table to which the symbol table refers. Note that
‘tabsize’ may be 0, indicating no symbols, even if bit 4 in the ‘flags’ word is set.

If bit 5 in the ‘flags’ word is set, then the following fields in the Multiboot information structure starting at byte 28 are valid:

e +
28 | num |
32 | size |
36 | addr |
40 | shndx |
oo +

These indicate where the section header table from an ELF kernel is, the size of each entry, number of entries, and the string table used as the index of names.
They correspond to the ‘shdr_*’ entries (‘shdr_num’, etc.) in the Executable and Linkable Format (ELF) specification in the program header. All sections are
loaded, and the physical address fields of the ELF section header then refer to where the sections are in memory (refer to the 1386 ELF documentation for details as
to how to read the section header(s)). Note that ‘shdr_num’ may be 0, indicating no symbols, even if bit 5 in the ‘flags’ word is set.

If bit 6 in the ‘f1lags’ word is set, then the ‘mmap *’ fields are valid, and indicate the address and length of a buffer containing a memory map of the machine
provided by the BIOS. ‘mmap_addr’ is the address, and ‘mmap length’ is the total size of the buffer. The buffer consists of one or more of the following
size/structure pairs (‘size’ is really used for skipping to the next pair):

0 | base_addr |

where ‘size’ is the size of the associated structure in bytes, which can be greater than the minimum of 20 bytes. ‘base_addr’ is the starting address. ‘length’is
the size of the memory region in bytes. ‘type’ is the variety of address range represented, where a value of 1 indicates available ram, value of 3 indicates usable
memory holding ACPI information, value of 4 indicates reserved memory which needs to be preserved on hibernation, value of 5 indicates a memory which is
occupied by defective RAM modules and all other values currently indicated a reserved area.

The map provided is guaranteed to list all standard ram that should be available for normal use.

If bit 7 in the ‘flags’ is set, then the ‘drives_ =’ fields are valid, and indicate the address of the physical address of the first drive structure and the size of drive
structures. ‘drives_addr’ is the address, and ‘drives length’is the total size of drive structures. Note that ‘drives_length’ may be zero. Each drive structure
is formatted as follows:

- +
0 | size |
- +
4 | drive number |
- +
5 | drive mode |
- +
6 | drive cylinders |
8 | drive heads |
9 | drive sectors |
- +
10 - xx | drive ports |
- +

The ‘size’ field specifies the size of this structure. The size varies, depending on the number of ports. Note that the size may not be equal to (10 + 2 * the number
of ports), because of an alignment.

The ‘drive number’ field contains the BIOS drive number. The ‘drive mode’ field represents the access mode used by the boot loader. Currently, the following
modes are defined:

(3 b

0
CHS mode (traditional cylinder/head/sector addressing mode).

LBA mode (Logical Block Addressing mode).

The three fields, ‘drive cylinders’, ‘drive_heads’ and ‘drive sectors’, indicate the geometry of the drive detected by the BI0OS. ‘drive cylinders’ contains
the number of the cylinders. ‘drive_heads’ contains the number of the heads. ‘drive sectors’ contains the number of the sectors per track.

The ‘drive ports’ field contains the array of the I/O ports used for the drive in the Bios code. The array consists of zero or more unsigned two-bytes integers,
and is terminated with zero. Note that the array may contain any number of I/O ports that are not related to the drive actually (such as bma controller's ports).

If bit 8 in the ‘flags’ is set, then the ‘config table’ field is valid, and indicates the address of the RomM configuration table returned by the GET
CONFIGURATION sios call. If the Bios call fails, then the size of the table must be zero.

If bit 9 in the ‘flags’ is set, the ‘boot loader name’ field is valid, and contains the physical address of the name of a boot loader booting the kernel. The name is
a normal C-style zero-terminated string.

If bit 10 in the ‘f1ags’ is set, the ‘apm_table’ field is valid, and contains the physical address of an apm table defined as below:

e +
0 | version |
2 | cseg |
4 | offset |
8 | cseg 16 |
10 | dseg |
12 | flags |
14 | cseg len |
16 | cseg 16 len |
18 | dseg len |

SRR +

The fields ‘version’, ‘cseg’, ‘offset’, ‘cseg 16, ‘dseg’, ‘flags’, ‘cseg_len’, ‘cseg 16 len’, ‘dseg len’ indicate the version number, the protected mode 32-
bit code segment, the offset of the entry point, the protected mode 16-bit code segment, the protected mode 16-bit data segment, the flags, the length of the
protected mode 32-bit code segment, the length of the protected mode 16-bit code segment, and the length of the protected mode 16-bit data segment,
respectively. Only the field ‘offset’ is 4 bytes, and the others are 2 bytes. See Advanced Power Management (APM) BIOS Interface Specification, for more
information.

If bit 11 in the ‘flags’ is set, the VBE table is available.

The fields ‘vbe_control info’ and ‘vbe mode info’ contain the physical addresses of VBE control information returned by the vBe Function 00h and vBE mode
information returned by the vBe Function O1h, respectively.

The field ‘vbe mode’ indicates current video mode in the format specified in vBE 3.0.

The rest fields ‘vbe_interface seg’, ‘vbe_interface off’,and ‘vbe interface len’ contain the table of a protected mode interface defined in vBE 2.0+. If
this information is not available, those fields contain zero. Note that vBE 3.0 defines another protected mode interface which is incompatible with the old one. If
you want to use the new protected mode interface, you will have to find the table yourself.

The fields for the graphics table are designed for vBE, but Multiboot boot loaders may simulate VBE on non-vBE modes, as if they were vBE modes.
If bit 12 in the ‘flags’ is set, the FRAMEBUFFER table is available.

The field ‘framebuffer addr’ contains framebuffer physical address. This field is 64-bit wide but bootloader should set it under 4 GiB if possible for

http://www.microsoft.com/hwdev/busbios/amp_12.htm

compatibility with kernels which aren't aware of PAE or AMD64. The field ‘framebuffer pitch’contains the framebuffer pitch in bytes. The fields
‘framebuffer width’, ‘framebuffer height’ contain the framebuffer dimensions in pixels. The field ‘framebuffer bpp’ contains the number of bits per pixel.
If ‘“framebuffer type’is setto ‘0’ it means indexed color will be used. In this case color_info is defined as follows:

110 | framebuffer palette addr |
114 | framebuffer palette num colors |

S +
0 | red value |
1 | green value |
2 | blue value |
S +

e +
110 | framebuffer red field position |
111 | framebuffer red mask size |
112 | framebuffer green field position |
113 | framebuffer green mask size |
114 | framebuffer blue field position |
115 | framebuffer blue mask size |

If ‘framebuffer type’is setto ‘2’ it means EGA-standard text mode will be used. In this case ‘framebuffer width’and ‘framebuffer height’ are expressed
in characters instead of pixels. ‘framebuffer bpp’ is equal to 16 (bits per character) and ‘framebuffer pitch’is expressed in bytes per text line. All further
values of ‘framebuffer type’ are reserved for future expansion.

Next: History, Previous: Specification, Up: Top

4 Examples

Caution: The following items are not part of the specification document, but are included for prospective operating system and boot loader writers.

Notes on PC

BIOS device mapping_techniques
Example OS code

Example boot loader code

Next: BIOS device mapping _techniques, Up: Examples

4.1 Notes on PC

In reference to bit O of the ‘£1ags’ parameter in the Multiboot information structure, if the bootloader in question uses older Bios interfaces, or the newest ones
are not available (see description about bit 6), then a maximum of either 15 or 63 megabytes of memory may be reported. It is highly recommended that boot
loaders perform a thorough memory probe.

In reference to bit 1 of the ‘£1ags’ parameter in the Multiboot information structure, it is recognized that determination of which Bios drive maps to which device
driver in an operating system is non-trivial, at best. Many kludges have been made to various operating systems instead of solving this problem, most of them
breaking under many conditions. To encourage the use of general-purpose solutions to this problem, there are 2 Bios device mapping techniques (see BIOS device

In reference to bit 6 of the ‘f1ags’ parameter in the Multiboot information structure, it is important to note that the data structure used there (starting with
‘BaseAddrLow’) is the data returned by the INT 15h, AX=E820h — Query System Address Map call. See See Query System Address Map, for more information.
The interface here is meant to allow a boot loader to work unmodified with any reasonable extensions of the Bios interface, passing along any extra data to be
interpreted by the operating system as desired.

Next: Example OS code, Previous: Notes on PC, Up: Examples

4.2 BIOS device mapping techniques

Both of these techniques should be usable from any PC operating system, and neither require any special support in the drivers themselves. This section will be
flushed out into detailed explanations, particularly for the I/O restriction technique.

The general rule is that the data comparison technique is the quick and dirty solution. It works most of the time, but doesn't cover all the bases, and is relatively
simple.

The I/0 restriction technique is much more complex, but it has potential to solve the problem under all conditions, plus allow access of the remaining BIOS
devices when not all of them have operating system drivers.

e Data comparison technique
e I/O restriction technique

Next: I/O restriction technique, Up: BIOS device mapping techniques

4.2.1 Data comparison technique

Before activating any of the device drivers, gather enough data from similar sectors on each of the disks such that each one can be uniquely identified.

https://www.gnu.org/software/grub/manual/multiboot/grub.html#Query-System-Address-Map

After activating the device drivers, compare data from the drives using the operating system drivers. This should hopefully be sufficient to provide such a
mapping.

Problems:

1. The data on some BIOs devices might be identical (so the part reading the drives from the Bios should have some mechanism to give up).
2. There might be extra drives not accessible from the Bios which are identical to some drive used by the Bios (so it should be capable of giving up there as
well).

Previous: Data comparison technique, Up: BIOS device mapping techniques

4.2.2 I/0 restriction technique

This first step may be unnecessary, but first create copy-on-write mappings for the device drivers writing into pc RAM. Keep the original copies for the clean Bios
virtual machine to be created later.

For each device driver brought online, determine which Bios devices become inaccessible by:

1. Create a clean BIOS virtual machine.

2. Set the I/O permission map for the I/O area claimed by the device driver to no permissions (neither read nor write).

3. Access each device.

4. Record which devices succeed, and those which try to access the restricted 1/0 areas (hopefully, this will be an xor situation).

For each device driver, given how many of the Bios devices were subsumed by it (there should be no gaps in this list), it should be easy to determine which
devices on the controller these are.

In general, you have at most 2 disks from each controller given Bios numbers, but they pretty much always count from the lowest logically numbered devices on
the controller.

Next: Example boot loader code, Previous: BIOS device mapping_techniques, Up: Examples

4.3 Example OS code

In this distribution, the example Multiboot kernel kernel is included. The kernel just prints out the Multiboot information structure on the screen, so you can
make use of the kernel to test a Multiboot-compliant boot loader and for reference to how to implement a Multiboot kernel. The source files can be found under
the directory doc in the Multiboot source distribution.

The kernel kernel consists of only three files: boot.s, kernel.c and multiboot.h. The assembly source boot.s is written in GAS (see GNU assembler), and
contains the Multiboot information structure to comply with the specification. When a Multiboot-compliant boot loader loads and execute it, it initialize the stack
pointer and EFLAGS, and then call the function cmain defined in kernel.c. If cmain returns to the callee, then it shows a message to inform the user of the halt
state and stops forever until you push the reset key. The file kernel.c contains the function cmain, which checks if the magic number passed by the boot loader
is valid and so on, and some functions to print messages on the screen. The file multiboot.h defines some macros, such as the magic number for the Multiboot
header, the Multiboot header structure and the Multiboot information structure.

multiboot.h

boot.S

kernel.c

Other Multiboot kernels

Next: boot.S, Up: Example OS code

4.3.1 multiboot.h

This is the source code in the file multiboot.h:

/* multiboot.h - Multiboot header file. */
/* Copyright (C) 1999,2003,2007,2008,2009,2010 Free Software Foundation, Inc.

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to

deal in the Software without restriction, including without limitation the
rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL ANY
DEVELOPER OR DISTRIBUTOR BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR
IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/

K K K KKK X X X X K KKK KKK

#ifndef MULTIBOOT HEADER
#define MULTIBOOT HEADER 1

/* How many bytes from the start of the file we search for the header. */
#define MULTIBOOT SEARCH 8192

https://www.gnu.org/software/grub/manual/multiboot/as.html#Top

#define MULTIBOOT HEADER ALIGN

/* The magic field should contain this. */
#define MULTIBOOT HEADER MAGIC

/* This should be in %eax. */
#define MULTIBOOT BOOTLOADER MAGIC

/* Alignment of multiboot modules. */
#define MULTIBOOT MOD ALIGN

/* Alignment of the multiboot info structure. */

#define MULTIBOOT INFO ALIGN

0x1BADB002

0x2BADB002

0x00001000

0x00000004

/* Flags set in the 'flags' member of the multiboot header. */

/* Align all boot modules on 1386 page (4KB) boundaries. */

#define MULTIBOOT PAGE ALIGN

/* Must pass memory information to OS. */
#define MULTIBOOT MEMORY INFO

/* Must pass video information to OS. */
#define MULTIBOOT VIDEO MODE

0x00000001

0x00000002

0x00000004

/* This flag indicates the use of the address fields in the header. */

#define MULTIBOOT AOUT KLUDGE

/* Flags to be set in the 'flags' member of the multiboot info structure.

/* 1s there basic lower/upper memory information? */

#define MULTIBOOT INFO MEMORY

/* 1S there a boot device set? */

#define MULTIBOOT INFO BOOTDEV

/* 18 the command-line defined? =/

#define MULTIBOOT INFO CMDLINE

/* are there modules to do something with? */
#define MULTIBOOT INFO MODS

/* These next two are mutually exclusive */

/* 1s there a symbol table loaded? */
#define MULTIBOOT INFO AOUT SYMS

/* 1s there an ELF section header table? */
#define MULTIBOOT INFO ELF SHDR

/* 1s there a full memory map? =*/
#define MULTIBOOT INFO MEM MAP

/* Is there drive info? */
#define MULTIBOOT INFO DRIVE_INFO

/* Is there a config table? x/
#define MULTIBOOT INFO CONFIG_ TABLE

/* Is there a boot loader name? */
#define MULTIBOOT INFO BOOT LOADER NAME

/* Is there a APM table? */
#define MULTIBOOT INFO APM TABLE

/* Is there video information? =*/

#define MULTIBOOT INFO VBE_ INFO
#define MULTIBOOT INFO FRAMEBUFFER_ INFO

#ifndef ASM FILE

typedef unsigned char
typedef unsigned short
typedef unsigned int
typedef unsigned long long

struct multiboot header

{

/* Must be MULTIBOOT MAGIC - see above. */

multiboot uint32 t magic;

/* Feature flags. */
multiboot uint32 t flags;

0x00010000

0x00000001

0x00000002

0x00000004

0x00000008

0x00000010

0X00000020

0x00000040

0x00000080

0x00000100

0x00000200

0x00000400

0x00000800
0x00001000

multiboot uint8 t;
multiboot uintlé t;
multiboot uint32 t;
multiboot uint64 t;

/* The above fields plus this one must equal 0 mod 2/A32. */

multiboot uint32 t checksum;

*/

/* These are only valid if MULTIBOOT_AOUT_KLUDGE is set. */

multiboot uint32 t header addr;
multiboot uint32 t load addr;
multiboot uint32 t load end addr;
multiboot uint32 t bss_end addr;
multiboot uint32 t entry addr;

/* These are only valid if MULTIBOOT_VIDEO_MODE is set. */

multiboot uint32 t mode type;

multiboot uint32 t width;
multiboot uint32 t height;
multiboot uint32 t depth;

}:

/* The symbol table for a.out. */

struct multiboot aout symbol table

{
multiboot uint32 t

multiboot uint32 t
multiboot uint32 t
multiboot uint32 t

}:

typedef struct multiboot aout symbol table multiboot aout symbol table t;

tabsize;
strsize;
addr;
reserved;

/* The section header table for ELF. */

struct multiboot elf

{
multiboot uint32 t

multiboot uint32 t
multiboot uint32 t
multiboot uint32 t

section_header_ table

num;
size;
addr;
shndx;

}i

typedef struct multiboot elf section header table multiboot elf section header table t;

struct multiboot info

{
/* Multiboot info version number */

multiboot uint32 t flags;

/* Available memory from BIOS */

multiboot uint32 t mem lower;
multiboot uint32 t mem upper;

/* "root" partition */
multiboot uint32 t boot device;

/* Kernel command line */
multiboot uint32 t cmdline;

/* Boot-Module list */
multiboot uint32 t mods count;
multiboot uint32 t mods addr;

union

{

multiboot aout symbol table t aout sym;
multiboot elf section header table t elf sec;

}ou;

/* Memory Mapping buffer */
multiboot uint32 t mmap length;
multiboot uint32 t mmap addr;

/* Drive Info buffer =/
multiboot uint32 t drives length;
multiboot uint32 t drives_ addr;

/* ROM configuration table */
multiboot uint32 t config table;

/* Boot Loader Name */
multiboot uint32 t boot loader name;

/* APM table */

multiboot uint32 t

/* Video =/

multiboot uint32 t
multiboot uint32 t
multiboot uintlé t
multiboot uintlé t
multiboot uintlé t
multiboot uintlé t

multiboot uinté64 t
multiboot uint32 t
multiboot uint32 t
multiboot uint32 t

apm_ table;

vbe control info;
vbe mode info;

vbe mode;

vbe interface seg;
vbe interface off;
vbe interface len;

framebuffer addr;
framebuffer pitch;
framebuffer width;
framebuffer height;

multiboot uint8 t framebuffer bpp;
#define MULTIBOOT FRAMEBUFFER TYPE INDEXED 0
#define MULTIBOOT FRAMEBUFFER TYPE RGB 1
#define MULTIBOOT FRAMEBUFFER TYPE EGA TEXT 2
multiboot uint8 t framebuffer type;

union

{

struct

{

multiboot uint32 t framebuffer palette addr;

multiboot uintl6é t framebuffer palette num colors;

}:

struct

{

multiboot uint8 t framebuffer red field position;

multiboot uint8 t framebuffer red mask size;

multiboot uint8 t framebuffer green field position;
multiboot uint8 t framebuffer green mask size;
multiboot uint8 t framebuffer blue field position;
multiboot uint8 t framebuffer blue mask size;

}i
typedef struct multiboot info multiboot info t;

struct multiboot color

{
multiboot uint8 t red;
multiboot uint8 t green;
multiboot uint8 t blue;

}i

struct multiboot mmap entry
{

multiboot uint32 t size;

multiboot uint64 t addr;

multiboot uint64 t len;
#define MULTIBOOT MEMORY AVAILABLE
#define MULTIBOOT MEMORY RESERVED
#define MULTIBOOT MEMORY ACPI RECLAIMABLE
#define MULTIBOOT MEMORY NVS
#define MULTIBOOT MEMORY BADRAM

multiboot uint32 t type;
} _attribute ((packed));
typedef struct multiboot mmap entry multiboot memory map t;

s N

struct multiboot mod list

{
/* the memory used goes from bytes 'mod_start' to 'mod_end-1' inclusive */

multiboot uint32 t mod start;
multiboot uint32 t mod end;

/* Module command line */
multiboot uint32 t cmdline;

/* padding to take it to 16 bytes (must be zero) */
multiboot uint32 t pad;

}i

typedef struct multiboot mod list multiboot module t;

/* APM BIOS info. */

struct multiboot apm info

{
multiboot uintlé t version;
multiboot uintlé t cseg;
multiboot uint32 t offset;
multiboot uintlé t cseg 16;
multiboot uintlé t dseg;
multiboot uintlé_t flags;
multiboot uintlé t cseg len;
multiboot uintlé_t cseg 16 len;
multiboot uintlé t dseg len;

}i
#endif /* | ASM_FILE =*/

#endif /* | MULTIBOOT_HEADER =/

Next: kernel.c, Previous: multiboot.h, Up: Example OS code

4.3.2 boot.S

In the file boot.s:

/* boot.S - bootstrap the kernel */
/* Copyright (C) 1999, 2001, 2010 Free Software Foundation, Inc.
*k
* This program is free software: you can redistribute it and/or modify
* 1t under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*k
* This program is distributed in the hope that it will be useful,
*but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*k
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/

#define ASM FILE 1
#include <multiboot.h>

/* C symbol format. HAVE_ASM_USCORE is defined by configure. */
#ifdef HAVE ASM USCORE
define EXT C(sym) _ ## sym

#else
define EXT C(sym) sym
#endif

/* The size of our stack (16KB). */
#define STACK SIZE 0x4000

/* The flags for the Multiboot header. */
#ifdef ELF
define AOUT_KLUDGE 0

#else

define AOUT KLUDGE MULTIBOOT AOUT KLUDGE

#endif

#define MULTIBOOT HEADER FLAGS MULTIBOOT PAGE ALIGN | MULTIBOOT MEMORY INFO | MULTIBOOT VIDEO MODE | AOUT KLUDGE
.text
.globl start, start

start:

_start:

jmp multiboot entry

/* Align 32 bits boundary. */
.align 4

/* Multiboot header. */
multiboot header:

/* magic */

.long MULTIBOOT HEADER MAGIC

/* flags */

.long MULTIBOOT HEADER FLAGS

/* checksum =*/

.long - (MULTIBOOT HEADER MAGIC + MULTIBOOT HEADER FLAGS)
#ifndef ELF

/* header_addr =/

.long multiboot header

/* load_addr =*/

.long _start
/* load_end_addr */
.long _edata

/* bss_end_addr */

.long _end

/* entry_addr =/

.long multiboot entry
#else /* | _ELF */

.long

.long

.long

.long

.long
#endif /* __ELF =*/

.long 0

.long 1024

.long 768

.long 32

O O O O o

multiboot entry:

/* Initialize the stack pointer. */
movl $(stack + STACK SIZE), %esp

/* Reset EFLAGS. */
pushl SO
popf

/* Push the pointer to the Multiboot information structure. */
pushl %ebx

/* Push the magic value. */
pushl %eax

/* Now enter the C main function... */

call EXT C(cmain)
/* Halt. */

pushl Shalt message
call EXT C(printf)

loop: hlt
jmp loop

halt message:
.asciz "Halted."

/* Qur stack area. */
.comm stack, STACK_SIZE

Next: Other Multiboot kernels, Previous: boot.S, Up: Example OS code

4.3.3 kernel.c

And, in the file kernel.c:

/* kernel.c - the C part of the kernel */
/* Copyright (C) 1999, 2010 Free Software Foundation, Inc.
*k
* This program is free software: you can redistribute it and/or modify
* 1t under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*k
* This program is distributed in the hope that it will be useful,
*but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*k
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/

#include <multiboot.h>
/* Macros. */

/* Check if the bit BIT in FLAGS is set. */
#define CHECK_ FLAG(flags,bit) ((flags) & (1 << (bit)))

/* Some screen stuff. =/
/* The number of columns. */

#define COLUMNS 80

/* The number of lines. */

#define LINES 24

/* The attribute of an character. */

#define ATTRIBUTE 7

/* The video memory address. */

#define VIDEO 0xB8000

/* Variables. */

/* Save the X position. */

static int xpos;

/* Save the Y position. */

static int ypos;

/* Point to the video memory. */

static volatile unsigned char *video;

/* Forward declarations. */

void cmain (unsigned long magic, unsigned long addr);
static void cls (void);

static void itoa (char *buf, int base, int d);

static void putchar (int c);

void printf (const char *format, ...);

/* Check if MAGIC is valid and print the Multiboot information structure
pointed by ADDR. */

void

cmain (unsigned long magic, unsigned long addr)

{

multiboot info t *mbi;

/* Clear the screen. */
cls ();

/* Am I booted by a Multiboot-compliant boot loader? */
if (magic != MULTIBOOT BOOTLOADER MAGIC)
{

printf ("Invalid magic number: 0x%x\n", (unsigned) magic);
return;

}

/* Set MBI to the address of the Multiboot information structure. */
mbi = (multiboot info t *) addr;

/* Print out the flags. */
printf ("flags = 0x%x\n", (unsigned) mbi->flags);

/* Are mem_* valid? */
if (CHECK FLAG (mbi->flags, 0))
printf ("mem lower = %uKB, mem upper = %$uKB\n",
(unsigned) mbi->mem lower, (unsigned) mbi->mem upper);

/* Is boot_device valid? */
if (CHECK FLAG (mbi->flags, 1))
printf ("boot device = 0x%$x\n", (unsigned) mbi->boot device);

/* Is the command line passed? =*/
if (CHECK FLAG (mbi->flags, 2))
printf ("cmdline = %s\n", (char *) mbi->cmdline);

/* Are mods_* valid? x/
if (CHECK FLAG (mbi->flags, 3))
{

multiboot module t *mod;
int i;

printf ("mods count = %d, mods addr = 0x%x\n",
(int) mbi->mods count, (int) mbi->mods_ addr);
for (1 = 0, mod = (multiboot module t *) mbi->mods addr;
i < mbi->mods_count;
i++, mod++)
printf (" mod start = 0x%x, mod end = 0x%x, cmdline = %s\n",
(unsigned) mod->mod start,
(unsigned) mod->mod_end,
(char *) mod->cmdline);

}

/* Bits 4 and 5 are mutually exclusive! */
if (CHECK FLAG (mbi->flags, 4) && CHECK FLAG (mbi->flags, 5))
{
printf ("Both bits 4 and 5 are set.\n");
return;

}

/* Is the symbol table of a.out valid? =/
if (CHECK FLAG (mbi->flags, 4))
{

multiboot aout symbol table t *multiboot aout sym = &(mbi->u.aout_sym);
printf ("multiboot aout symbol table: tabsize = 0x%0x, "
"strsize = 0x%x, addr = 0x%x\n",

(unsigned) multiboot aout sym->tabsize,
(unsigned) multiboot aout sym->strsize,
(unsigned) multiboot aout sym->addr);

}

/* Is the section header table of ELF valid? =*/
if (CHECK FLAG (mbi->flags, 5))
{

multiboot elf section header table t *multiboot elf sec = &(mbi->u.elf sec);
printf ("multiboot elf sec: num = %u, size = 0x%x,"

" addr = 0x%x, shndx = 0x%x\n",

(unsigned) multiboot elf sec->num, (unsigned) multiboot elf sec->size,
(unsigned) multiboot elf sec->addr, (unsigned) multiboot elf sec->shndx);

}

/* Are mmap_* valid? */
if (CHECK FLAG (mbi->flags, 6))
{

multiboot memory map t *mmap;

printf ("mmap addr = 0x%x, mmap length = 0x%x\n",
(unsigned) mbi->mmap addr, (unsigned) mbi->mmap length);

for (mmap = (multiboot memory map t *) mbi->mmap addr;
(unsigned long) mmap < mbi->mmap addr + mbi->mmap length;
mmap = (multiboot memory map t *) ((unsigned long) mmap

+ mmap->size + sizeof (mmap->size)))

printf (" size = 0x%x, base addr = 0x%x%08x,"

" length = 0x%x%08x, type = 0x%x\n",

(unsigned) mmap->size,

(unsigned) (mmap->addr >> 32),

(unsigned) (mmap->addr & Oxffffffff),

(unsigned) (mmap->len >> 32),

(unsigned) (mmap->len & OxXffffffff),

(unsigned) mmap->type);

}

/* Draw diagonal blue line. */
if (CHECK FLAG (mbi->flags, 12))
{
multiboot uint32 t color;

unsigned 1ij;
void *fb = (void *) (unsigned long) mbi->framebuffer addr;

switch (mbi->framebuffer type)

{
case MULTIBOOT FRAMEBUFFER TYPE INDEXED:

{

unsigned best distance, distance;
struct multiboot color *palette;

palette = (struct multiboot color *) mbi->framebuffer palette addr;

color = 0;
best distance = 4*256%*256;

for (1 = 0; 1 < mbi->framebuffer palette num colors; i++)
{
distance = (0xff - palette[i].blue) * (0xff - palette[i].blue)
+ palette[i].red * palette[i].red
+ palette[i].green * palette[i].green;
if (distance < best distance)
{
color = ij;
best distance = distance;
}
}
}

break;

case MULTIBOOT FRAMEBUFFER TYPE RGB:

color = ((1 << mbi->framebuffer blue mask size) - 1)
<< mbi->framebuffer blue field position;
break;

case MULTIBOOT FRAMEBUFFER TYPE EGA TEXT:

color = '"\\' | 0x0100;
break;

default:
color = OxXffffffff;
break;

}
for (i = 0; i < mbi->framebuffer width
&& i < mbi->framebuffer height; i++)

{
switch (mbi->framebuffer bpp)
{
case 8:
{
multiboot uint8 t *pixel = fb + mbi->framebuffer pitch * i + 1ij;
*pixel = color;
}
break;
case 15:
case 16:
{
multiboot uintlé_t *pixel
= fb + mbi->framebuffer pitch * i + 2 * i;
*pixel = color;
}
break;
case 24:
{
multiboot uint32 t *pixel
= fb + mbi->framebuffer pitch * i + 3 * 1i;
*pixel = (color & Oxffffff) | (*pixel & 0x£f£f000000);
}
break;
case 32:
{
multiboot uint32 t *pixel
= fb + mbi->framebuffer pitch * i + 4 * i;
*pixel = color;
}
break;
}
}

}
/* Clear the screen and initialize VIDEO, XPOS and YPOS. */

static void
cls (void)

{
int i;
video = (unsigned char *) VIDEO;
for (i = 0; i < COLUMNS * LINES * 2; i++)
*(video + i) = 0;
xXpos = 0;
ypos = 0;
}

/* Convert the integer D to a string and save the string in BUF. If
BASE is equal to 'd', interpret that D is decimal, and if BASE is

equal to 'x', interpret that D is hexadecimal. */

static void

itoa (char *buf, int base, int d)

{

char *p = buf;
char *pl, *p2;
unsigned long ud = d;
int divisor = 10;

/* If 9%d is specified and D is minus, put "-' in the head. */
if (base == 'd' && d < 0)
{
*p++ = '-';
buf++;
ud = -d;
}
else if (base == 'x')
divisor = 16;

/* Divide UD by DIVISOR until UD == 0. */
do
{

int remainder = ud % divisor;

*p++ = (remainder < 10) ? remainder + '0' : remainder + 'a' - 10;

}

while (ud /= divisor);

/* Terminate BUF. */
*p = 0;

/* Reverse BUF. */
pl = buf;
p2 = p - 1;
while (pl < p2)
{
char tmp = *pl;
*pl = *p2;
*p2 = tmp;
pl++;
p2--;

}

/* Put the character C on the screen. */
static void
putchar (int c¢)
{
if (¢ == '\n' || ¢ == "\r")
{
newline:
xXpos = 0;
ypos++;
if (ypos >= LINES)
ypos = 0;
return;

}

*(video + (xpos + ypos * COLUMNS) * 2) = c & OxXFF;
*(video + (xpos + ypos * COLUMNS) * 2 + 1) = ATTRIBUTE;

Xpos++;
if (xpos >= COLUMNS)
goto newline;

}

/* Format a string and print it on the screen, just like the libc
function printf. */

void
printf (const char *format, ...)
{
char **arg = (char **) &format;
int c;

char buf[20];

arg++;
while ((c = *format++) != 0)
{
if (c 1= '%")
putchar (c);
else
{

char *p, *p2;
int pad0 = 0, pad = 0;

c = *format++;
if (¢ == '0")
{
pad0 = 1;
c = *format++;

}

if (¢ >= '0' && c <= '9")
{
pad = c - '0';
c = *format++;

}

switch (c)
{
case 'd':
case 'u
case 'x':
itoa (buf, c, *((int *) arg++));
p = buf;
goto string;
break;
case 's':
p = *arg++;
if (! p)
p = "(null)";

string:
for (p2 = p; *p2; p2++);
for (; p2 < p + pad; p2++)
putchar (pad0 2?2 '0' : ' ');
while (*p)
putchar (*p++);
break;

default:
putchar (*((int *) arg++));
break;

Previous: kernel.c, Up: Example OS code
4.3.4 Other Multiboot kernels

Other useful information should be available in Multiboot kernels, such as GNU Mach and Fiasco http://os.inf.tu-dresden.de/fiasco/. And, it is worth mentioning
the OSKit http://www.cs.utah.edu/projects/flux/oskit/, which provides a library supporting the specification.

Previous: Example OS code, Up: Examples

4.4 Example boot loader code

The GNU GRUB (see GRUB) project is a Multiboot-compliant boot loader, supporting all required and many optional features present in this specification. A
public release has not been made, but the test release is available from:

ftp://alpha.gnu.org/gnu/grub

See the webpage http://www.gnu.org/software/grub/grub.html, for more information.

Next: Invoking mbchk, Previous: Examples, Up: Top

S The change log of this specification

0.7

e Multiboot Standard is renamed to Multiboot Specification.

Graphics fields are added to Multiboot header.

BIOS drive information, BIOS configuration table, the name of a boot loader, APM information, and graphics information are added to Multiboot
information.

Rewritten in Texinfo format.

Rewritten, using more strict words.

The maintainer changes to the GNU GRUB maintainer team bug-grub@ gnu.org, from Bryan Ford and Erich Stefan Boleyn.

The byte order of the ‘boot_device’ in Multiboot information is reversed. This was a mistake.

The offset of the address fields were wrong.

The format is adapted to a newer Texinfo, and the version number is specified more explicitly in the title.

0.6

e A few wording changes.
e Header checksum.
e (lassification of machine state passed to an operating system.

0.5

e Name change.

0.4

e Major changes plus HTMLification.

Next: Index, Previous: History, Up: Top

6 Invoking mbchk

The program mbchk checks for the format of a Multiboot kernel. We recommend using this program before booting your own kernel.

mbchk accepts the following options:

--help

Print a summary of the command-line options and exit.
—-=version

Print the version number of GRUB and exit.
--quiet

Suppress all normal output.

Previous: Invoking mbchk, Up: Top

Index

Table of Contents

http://os.inf.tu-dresden.de/fiasco/
http://www.cs.utah.edu/projects/flux/oskit/
https://www.gnu.org/software/grub/manual/multiboot/grub.html#Top
ftp://alpha.gnu.org/gnu/grub
http://www.gnu.org/software/grub/grub.html
mailto:bug-grub@gnu.org

Multiboot Specification

e 1 Introduction to Multiboot Specification

o 1.1 The background of Multiboot Specification
1.2 The target architecture
1.3 The target operating systems
1.4 Boot sources
1.5 Configure an operating system at boot-time
1.6 How to make OS development easier
o 1.7 Boot modules
2 The definitions of terms used through the specification

O O o o o

e 3 The exact definitions of Multiboot Specification

o 3.1 OS image format
m 3.1.1 The layout of Multiboot header
= 3.1.2 The magic fields of Multiboot header
m 3.1.3 The address fields of Multiboot header
m 3.1.4 The graphics fields of Multiboot header
o 3.2 Machine state
o 3.3 Boot information format
4 Examples
o 4.1 Notes on PC

= 4.2.1 Data comparison technique
m 4.2.2 I/O restriction technique

o 4.3 Example OS code
= 4.3.1 multiboot.h
= 4.3.2 boot.S
= 4.3.3 kernel.c
= 4.3.4 Other Multiboot kernels

o 4.4 Example boot loader code

S The change log of this specification

e 6 Invoking mbchk
e Index

