Higher Half x86 Bare Bones

From OSDev Wiki
Difficulty level
Contents 0o
Medium
= | Theory
m 2 Code
= 2.1 Assumptions
m 2.2 boot.s

m 2.3 linker.ld
m 2.4 kernel.c

Theory

A higher half kernel is a kernel that is mapped to the higher half of the virtual address space, despite being
loaded to the lower half of the physical address space. In order to understand the concept, it is recommended
that you have a firm grasp of theory at bare bones and paging.

When GRUB passes control to the kernel, paging is disabled. This means that physical and virtual addresses
correspond to the same addresses.

When writing a higher-half kernel, the steps required are:

= Reserve some pages for the initial mappings, so it is possible to parse GRUB structures before
memory management is enabled.

= (Create page tables that contain the page frames of the kernel image.

= Create the boot page directory that contains the aforementioned page tables both in lower half and
higher half.

= Enable paging.

= Jump to higher half.

= Remove the lower half kernel mapping.

Code

Here is some sample code for a kernel that is loaded by the GRUB bootloader and then mapped in the upper
half of virtual memory. In this case the kernel is loaded at physical address 0x00100000 and mapped to
virtual address 0xC0100000.

Assumptions

This example makes many assumptions:

= [t assumes the kernel is smaller than 3 MiB (reserved is only one boot page table).

= [t assumes the developer wants to map the kernel at 0xC0000000.

= [t assumes every ELF section is both readable and writable (which is not the case for .text and
.rodata)

https://wiki.osdev.org/File:Difficulty_2.png
https://wiki.osdev.org/Bare_Bones
https://wiki.osdev.org/Paging
https://wiki.osdev.org/GRUB

boot.s

After GRUB passes control to the kernel, this piece of code is executed, starting from _start
bootstraps the kernel by performing the aforementioned steps required and calling main().

Declare constants for the multiboot header.
set ALIGN, 1<<0 # align loaded modules on page boundaries

set MEMINFO, 1<<1 # provide memory map

set FLAGS, ALIGN | MEMINFO # this is the Multiboot 'flag' field

set MAGIC, 0x1BADB002 # 'magic number' lets bootloader find the header
#

set CHECKSUM, -(MAGIC + FLAGS) checksum of above, to prove we are multiboot

Declare a multiboot header that marks the program as a kernel.
.section .multiboot
.align 4
:.long MAGIC
E.long FLAGS
'.long CHECKSUM

Allocate the initial stack.

.section .bootstrap stack, "aw", @nobits

:stack_bottom:

.skip 16384 # 16 KiB

'stack_top:

Preallocate pages used for paging. Don't hard-code addresses and assume they
are available, as the bootloader might have loaded its multiboot structures or
modules there. This lets the bootloader know it must avoid the addresses.
.section .bss, "aw", @nobits

. .align 4096

boot page directory:

: .skip 4096

boot page tablel:

: .skip 4096

Further page tables may be required if the kernel grows beyond 3 MiB.

FH FHF

The kernel entry point.
.section .text

.global _start

.type _start, @function

Size of page is 4096 bytes.
addl $4096, %esi
Size of entries in boot page tablel is 4 bytes.

' _start:

! # Physical address of boot page tablel.

: # TODO: I recall seeing some assembly that used a macro to do the

: # conversions to and from physical. Maybe this should be done in this
: # code as well?

: movl $(boot page tablel - 0xC0000000), %edi

E # First address to map is address 0.

: # TODO: Start at the first kernel page instead. Alternatively map the first
: # 1 MiB as it can be generally useful, and there's no need to

: # specially map the VGA buffer.

: movl $0, %Sesi

: # Map 1023 pages. The 1024th will be the VGA text buffer.

E movl $1023, %ecx

1:

: # Only map the kernel.

: cmpl $(_kernel start - 0xC0000000), %esi

: j1 2f

E cmpl $(_kernel end - 0xC0000000), %esi

: jge 3f

: # Map physical address as "present, writable". Note that this maps

: # .text and .rodata as writable. Mind security and map them as non-writable.
: movl %esi, %edx

E orl $0x003, %edx

: movl %edx, (%edi)

2 2

. This essentially

addl $4, %edi
Loop to the next entry if we haven't finished.

: loop 1b |
e
: # Map VGA video memory to 0xXCO3FF000 as "present, writable". |
: movl $(0x000B8000 | 0x003), boot page tablel - 0xC0000000 + 1023 * 4 :
: # The page table is used at both page directory entry 0 (virtually from 0x0 :
: # to O0x3FFFFF) (thus identity mapping the kernel) and page directory entry |
E # 768 (virtually from 0xC0000000 to OxCO3FFFFF) (thus mapping it in the E
: # higher half). The kernel is identity mapped because enabling paging does |
: # not change the next instruction, which continues to be physical. The CPU :
: # would instead page fault if there was no identity mapping. :
: # Map the page table to both virtual addresses 0x00000000 and 0xC0000000. |
E movl $(boot page tablel - 0xC0000000 + 0x003), boot page directory - 0xC0000000 + O E
: movl $(boot page tablel - 0xC0000000 + 0x003), boot page directory - 0xC0000000 + 768 * 4 |
: # Set cr3 to the address of the boot page directory. :
: movl $(boot page directory - 0xC0000000), %ecx |
: movl %ecx, %cr3 |
E # Enable paging and the write-protect bit. E
: movl %cr0, %ecx :
: orl $0x80010000, %ecx |
: movl %ecx, %cr0 :
E # Jump to higher half with an absolute jump. E
: lea 4f, %ecx |
: jmp *%ecx :
4 |
: # At this point, paging is fully set up and enabled. |
E # Unmap the identity mapping as it is now unnecessary. E
: movl $0, boot page directory + 0 :
: # Reload crc3 to force a TLB flush so the changes to take effect. :
: movl %cr3, %ecx |
E movl %ecx, %cr3 E
E # Set up the stack. E
: mov $stack top, %esp |
: # Enter the high-level kernel. |
E call kernel main E
E # Infinite loop if the system has nothing more to do. E
! cli :
1: hlt |
: jmp 1b |
linker.ld

This is a little trickier than it was for the bare bones tutorial, since you need to distinguish between virtual
addresses (which will be in the higher half) and physical addresses (which GRUB needs to decide where to
put your kernel).

ENTRY (_start)

SECTIONS

{

: /* The kernel will live at 3GB + 1MB in the virtual address space, */
: /* which will be mapped to 1MB in the physical address space. */

: /* Note that we page-align the sections. */

E . = 0xC0100000;

: /* Add a symbol that indicates the start address of the kernel. */

: _kernel start = .;

: .text ALIGN (4K) : AT (ADDR (.text) - 0xC0000000)

https://wiki.osdev.org/Bare_Bones

*(.multiboot)

E *(.text) E
: } |
: .rodata ALIGN (4K) : AT (ADDR (.rodata) - 0xC0000000) |
E { i
: *(.rodata) |
: } |
; .data ALIGN (4K) : AT (ADDR (.data) - 0xC0000000) |
: { |
: *(.data) :
E) i
: .bss ALIGN (4K) : AT (ADDR (.bss) - 0xC0000000) |
: { |
; * (COMMON) |
: *(.bss) :
: *(.bootstrap stack) |
: } |
E /* Add a symbol that indicates the end address of the kernel. */ E
: _kernel end = .; |
} |
kernel.c

Use kernel.c from Bare Bones with the following change. In boot.s we reserved the 1024th page for the
VGA text buffer. This corresponds to virtual address OxCO3FF000. Change the initialization of

terminal buffer {O:

——

i terminal buffer = (uintlé t*) O0xCO3FF000; i

Retrieved from "https://wiki.osdev.org/index.php?title=Higher_Half x86_Bare_Bones&oldid=23060"
Category: Level 2 Tutorials

» This page was last modified on 27 October 2018, at 14:40.
= This page has been accessed 8,414 times.

https://wiki.osdev.org/Category:Level_2_Tutorials
https://wiki.osdev.org/Bare_Bones#Writing_a_kernel_in_C
https://wiki.osdev.org/index.php?title=Higher_Half_x86_Bare_Bones&oldid=23060
https://wiki.osdev.org/Special:Categories

