• Julien Plu's avatar
    Tensorflow improvements (#4530) · f9414f75
    Julien Plu authored
    
    
    * Better None gradients handling
    
    * Apply Style
    
    * Apply Style
    
    * Create a loss class per task to compute its respective loss
    
    * Add loss classes to the ALBERT TF models
    
    * Add loss classes to the BERT TF models
    
    * Add question answering and multiple choice to TF Camembert
    
    * Remove prints
    
    * Add multiple choice model to TF DistilBERT + loss computation
    
    * Add question answering model to TF Electra + loss computation
    
    * Add token classification, question answering and multiple choice models to TF Flaubert
    
    * Add multiple choice model to TF Roberta + loss computation
    
    * Add multiple choice model to TF XLM + loss computation
    
    * Add multiple choice and question answering models to TF XLM-Roberta
    
    * Add multiple choice model to TF XLNet + loss computation
    
    * Remove unused parameters
    
    * Add task loss classes
    
    * Reorder TF imports + add new model classes
    
    * Add new model classes
    
    * Bugfix in TF T5 model
    
    * Bugfix for TF T5 tests
    
    * Bugfix in TF T5 model
    
    * Fix TF T5 model tests
    
    * Fix T5 tests + some renaming
    
    * Fix inheritance issue in the AutoX tests
    
    * Add tests for TF Flaubert and TF XLM Roberta
    
    * Add tests for TF Flaubert and TF XLM Roberta
    
    * Remove unused piece of code in the TF trainer
    
    * bugfix and remove unused code
    
    * Bugfix for TF 2.2
    
    * Apply Style
    
    * Divide TFSequenceClassificationAndMultipleChoiceLoss into their two respective name
    
    * Apply style
    
    * Mirror the PT Trainer in the TF one: fp16, optimizers and tb_writer as class parameter and better dataset handling
    
    * Fix TF optimizations tests and apply style
    
    * Remove useless parameter
    
    * Bugfix and apply style
    
    * Fix TF Trainer prediction
    
    * Now the TF models return the loss such as their PyTorch couterparts
    
    * Apply Style
    
    * Ignore some tests output
    
    * Take into account the SQuAD cls_index, p_mask and is_impossible parameters for the QuestionAnswering task models.
    
    * Fix names for SQuAD data
    
    * Apply Style
    
    * Fix conflicts with 2.11 release
    
    * Fix conflicts with 2.11
    
    * Fix wrongname
    
    * Add better documentation on the new create_optimizer function
    
    * Fix isort
    
    * logging_dir: use same default as PyTorch
    
    Co-authored-by: default avatarJulien Chaumond <chaumond@gmail.com>
    f9414f75