-
Zachary Mueller authored
Co-authored-by:
Sylvain Gugger <35901082+sgugger@users.noreply.github.com> - Adds auto_batch_size finder - Moves training loop to an inner training loop
Unverified2fbb2379
Forked from
zhusg / transformers-new
9351 commits behind, 11 commits ahead of the upstream repository.
version: 2.1
orbs:
gcp-gke: circleci/gcp-gke@1.0.4
go: circleci/go@1.3.0
# TPU REFERENCES
references:
checkout_ml_testing: &checkout_ml_testing
run:
name: Checkout ml-testing-accelerators
command: |
git clone https://github.com/GoogleCloudPlatform/ml-testing-accelerators.git
cd ml-testing-accelerators
git fetch origin 5e88ac24f631c27045e62f0e8d5dfcf34e425e25:stable
git checkout stable
build_push_docker: &build_push_docker
run:
name: Configure Docker
command: |
gcloud --quiet auth configure-docker
cd docker/transformers-pytorch-tpu
if [ -z "$CIRCLE_PR_NUMBER" ]; then docker build --tag "$GCR_IMAGE_PATH:$CIRCLE_WORKFLOW_JOB_ID" -f Dockerfile --build-arg "TEST_IMAGE=1" . ; else docker build --tag "$GCR_IMAGE_PATH:$CIRCLE_WORKFLOW_JOB_ID" -f Dockerfile --build-arg "TEST_IMAGE=1" --build-arg "GITHUB_REF=pull/$CIRCLE_PR_NUMBER/head" . ; fi
docker push "$GCR_IMAGE_PATH:$CIRCLE_WORKFLOW_JOB_ID"
deploy_cluster: &deploy_cluster
run:
name: Deploy the job on the kubernetes cluster
command: |
go get github.com/google/go-jsonnet/cmd/jsonnet && \
export PATH=$PATH:$HOME/go/bin && \
kubectl create -f docker/transformers-pytorch-tpu/dataset.yaml || true && \
job_name=$(jsonnet -J ml-testing-accelerators/ docker/transformers-pytorch-tpu/bert-base-cased.jsonnet --ext-str image=$GCR_IMAGE_PATH --ext-str image-tag=$CIRCLE_WORKFLOW_JOB_ID | kubectl create -f -) && \
job_name=${job_name#job.batch/} && \
job_name=${job_name% created} && \
echo "Waiting on kubernetes job: $job_name" && \
i=0 && \
# 30 checks spaced 30s apart = 900s total.
max_checks=30 && \
status_code=2 && \
# Check on the job periodically. Set the status code depending on what
# happened to the job in Kubernetes. If we try max_checks times and
# still the job hasn't finished, give up and return the starting
# non-zero status code.
while [ $i -lt $max_checks ]; do ((i++)); if kubectl get jobs $job_name -o jsonpath='Failed:{.status.failed}' | grep "Failed:1"; then status_code=1 && break; elif kubectl get jobs $job_name -o jsonpath='Succeeded:{.status.succeeded}' | grep "Succeeded:1" ; then status_code=0 && break; else echo "Job not finished yet"; fi; sleep 30; done && \
echo "Done waiting. Job status code: $status_code" && \
pod_name=$(kubectl get po -l controller-uid=`kubectl get job $job_name -o "jsonpath={.metadata.labels.controller-uid}"` | awk 'match($0,!/NAME/) {print $1}') && \
echo "GKE pod name: $pod_name" && \
kubectl logs -f $pod_name --container=train
echo "Done with log retrieval attempt." && \
gcloud container images delete "$GCR_IMAGE_PATH:$CIRCLE_WORKFLOW_JOB_ID" --force-delete-tags && \
exit $status_code
delete_gke_jobs: &delete_gke_jobs
run:
name: Delete GKE Jobs
command: |
# Match jobs whose age matches patterns like '1h' or '1d', i.e. any job
# that has been around longer than 1hr. First print all columns for
# matches, then execute the delete.
kubectl get job | awk 'match($4,/[0-9]+[dh]/) {print $0}'
kubectl delete job $(kubectl get job | awk 'match($4,/[0-9]+[dh]/) {print $1}')
jobs:
run_tests_torch_and_tf:
working_directory: ~/transformers
docker:
- image: circleci/python:3.7
environment:
OMP_NUM_THREADS: 1
7172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140
RUN_PT_TF_CROSS_TESTS: yes
TRANSFORMERS_IS_CI: yes
resource_class: xlarge
parallelism: 1
steps:
- checkout
- restore_cache:
keys:
- v0.4-torch_and_tf-{{ checksum "setup.py" }}
- v0.4-{{ checksum "setup.py" }}
- run: sudo apt-get -y update && sudo apt-get install -y libsndfile1-dev espeak-ng
- run: pip install --upgrade pip
- run: pip install .[sklearn,tf-cpu,torch,testing,sentencepiece,torch-speech,vision]
- run: pip install torch-scatter -f https://pytorch-geometric.com/whl/torch-1.11.0+cpu.html
- run: pip install tensorflow_probability
- run: pip install https://github.com/kpu/kenlm/archive/master.zip
- run: pip install git+https://github.com/huggingface/accelerate
- save_cache:
key: v0.4-{{ checksum "setup.py" }}
paths:
- '~/.cache/pip'
- run: python utils/tests_fetcher.py | tee test_preparation.txt
- store_artifacts:
path: ~/transformers/test_preparation.txt
- run: |
if [ -f test_list.txt ]; then
python -m pytest -n 8 --dist=loadfile -rA -s --make-reports=tests_torch_and_tf $(cat test_list.txt) -m is_pt_tf_cross_test --durations=0 | tee tests_output.txt
fi
- store_artifacts:
path: ~/transformers/tests_output.txt
- store_artifacts:
path: ~/transformers/reports
run_tests_torch_and_tf_all:
working_directory: ~/transformers
docker:
- image: circleci/python:3.7
environment:
OMP_NUM_THREADS: 1
RUN_PT_TF_CROSS_TESTS: yes
TRANSFORMERS_IS_CI: yes
resource_class: xlarge
parallelism: 1
steps:
- checkout
- restore_cache:
keys:
- v0.4-torch_and_tf-{{ checksum "setup.py" }}
- v0.4-{{ checksum "setup.py" }}
- run: sudo apt-get -y update && sudo apt-get install -y libsndfile1-dev espeak-ng
- run: pip install --upgrade pip
- run: pip install .[sklearn,tf-cpu,torch,testing,sentencepiece,torch-speech,vision]
- run: pip install torch-scatter -f https://pytorch-geometric.com/whl/torch-1.11.0+cpu.html
- run: pip install tensorflow_probability
- run: pip install https://github.com/kpu/kenlm/archive/master.zip
- run: pip install git+https://github.com/huggingface/accelerate
- save_cache:
key: v0.4-{{ checksum "setup.py" }}
paths:
- '~/.cache/pip'
- run: |
python -m pytest -n 8 --dist=loadfile -rA -s --make-reports=tests_torch_and_tf tests -m is_pt_tf_cross_test --durations=0 | tee tests_output.txt
- store_artifacts:
path: ~/transformers/tests_output.txt
- store_artifacts:
path: ~/transformers/reports
run_tests_torch_and_flax:
working_directory: ~/transformers
docker: