- 06 Feb, 2025 2 commits
-
-
Pedro Cuenca authored
When using text-only LLMs, the chat template is expected to take care of adding the required special tokens, such as bos. Hence, tokenization must not include special tokens. The same contract should be honored for multimodal processors.
-
Ye Liu authored
* Add `Qwen2VLImageProcessorFast` into `Qwen2VLProcessor` * Use `AutoImageProcessor` instead Co-authored-by:
Yoni Gozlan <74535834+yonigozlan@users.noreply.github.com> --------- Co-authored-by:
Yoni Gozlan <74535834+yonigozlan@users.noreply.github.com>
-
- 05 Feb, 2025 10 commits
-
-
Sambhav Dixit authored
* added condition for top_k Doc mismatch fix * initilation of test file for top_k changes * added test for returning all labels * added test for few labels * tests/test_audio_classification_top_k.py * final fix * ruff fix --------- Co-authored-by:
sambhavnoobcoder <indosambahv@gmail.com>
-
Matt authored
* Fix how we compute the final non-padding token for Gemma (and probably other models) * .size() -> .shape[] * Propagating changes to other models * Propagating changes to other models * Change it for all ForSequenceClassification models * Fix batch dim * More TF fixes * Copy the TF fix around as well * Correct layer name for TFCTRL * Cleaner .to() * Clean up the nested if-else * Use argmax() instead of .max().values
-
Fanli Lin authored
make device-agnostic
-
Fanli Lin authored
* fix doc * update model
-
Fanli Lin authored
* change cuda to DEVICE * Update docs/source/en/llm_tutorial.md Co-authored-by:
Steven Liu <59462357+stevhliu@users.noreply.github.com> --------- Co-authored-by:
Steven Liu <59462357+stevhliu@users.noreply.github.com>
-
Stas Bekman authored
deepspeed github repo move
-
ROZBEH authored
handle cases where it is list
-
Liangliang Ma authored
* add xpu for unmask * change modular for generated matching * add lastest modeling for helium
-
ManukyanD authored
* Fix synced multi-GPU generation * fix copies --------- Co-authored-by: Davit Manukyan <ManukyanD> Co-authored-by:
Raushan Turganbay <raushan@huggingface.co>
-
ManukyanD authored
* Fix Gemma2 synced multi-GPU generation * Fix import ordering in modular_gemma2.py
-
- 04 Feb, 2025 16 commits
-
-
Yoni Gozlan authored
* add init and base image processing functions * add add_fast_image_processor to transformers-cli * add working fast image processor clip * add fast image processor to doc, working tests * remove "to be implemented" SigLip * fix unprotected import * fix unprotected vision import * update ViTImageProcessorFast * increase threshold slow fast ewuivalence * add fast img blip * add fast class in tests with cli * improve cli * add fast image processor convnext * add LlavaPatchingMixin and fast image processor for llava_next and llava_onevision * add device kwarg to ImagesKwargs for fast processing on cuda * cleanup * fix unprotected import * group images by sizes and add batch processing * Add batch equivalence tests, skip when center_crop is used * cleanup * update init and cli * fix-copies * refactor convnext, cleanup base * fix * remove patching mixins, add piped torchvision transforms for ViT * fix unbatched processing * fix f strings * protect imports * change llava onevision to class transforms (test) * fix convnext * improve formatting (following Pavel review) * fix handling device arg * improve cli * fix * fix inits * Add distinction between preprocess and _preprocess, and support for arbitrary kwargs through valid_extra_kwargs * uniformize qwen2_vl fast * fix docstrings * add add fast image processor llava * remove min_pixels max_pixels from accepted size * nit * nit * refactor fast image processors docstrings * cleanup and remove fast class transforms * update add fast image processor transformers cli * cleanup docstring * uniformize pixtral fast and make _process_image explicit * fix prepare image structure llava next/onevision * Use typed kwargs instead of explicit args * nit fix import Unpack * clearly separate pops and gets in base preprocess. Use explicit typed kwargs * make qwen2_vl preprocess arguments hashable
-
David authored
* initial commit * encoder+decoder layer changes WIP * architecture checks * working version of detection + segmentation * fix modeling outputs * fix return dict + output att/hs * found the position embedding masking bug * pre-training version * added iamge processors * typo in init.py * iterupdate set to false * fixed num_labels in class_output linear layer bias init * multihead attention shape fixes * test improvements * test update * dab-detr model_doc update * dab-detr model_doc update2 * test fix:test_retain_grad_hidden_states_attentions * config file clean and renaming variables * config file clean and renaming variables fix * updated convert_to_hf file * small fixes * style and qulity checks * return_dict fix * Merge branch main into add_dab_detr * small comment fix * skip test_inputs_embeds test * image processor updates + image processor test updates * check copies test fix update * updates for check_copies.py test * updates for check_copies.py test2 * tied weights fix * fixed image processing tests and fixed shared weights issues * added numpy nd array option to get_Expected_values method in test_image_processing_dab_detr.py * delete prints from test file * SafeTensor modification to solve HF Trainer issue * removing the safetensor modifications * make fix copies and hf uplaod has been added. * fixed index.md * fixed repo consistency * styel fix and dabdetrimageprocessor docstring update * requested modifications after the first review * Update src/transformers/models/dab_detr/image_processing_dab_detr.py Co-authored-by:
Pavel Iakubovskii <qubvel@gmail.com> * repo consistency has been fixed * update copied NestedTensor function after main merge * Update src/transformers/models/dab_detr/modeling_dab_detr.py Co-authored-by:
Pavel Iakubovskii <qubvel@gmail.com> * temp commit * temp commit2 * temp commit 3 * unit tests are fixed * fixed repo consistency * updated expected_boxes varible values based on related notebook results in DABDETRIntegrationTests file. * temporarialy config modifications and repo consistency fixes * Put dilation parameter back to config * pattern embeddings have been added to the rename_keys method * add dilation comment to config + add as an exception in check_config_attributes SPECIAL CASES * delete FeatureExtractor part from docs.md * requested modifications in modeling_dab_detr.py * [run_slow] dab_detr * deleted last segmentation code part, updated conversion script and changed the hf path in test files * temp commit of requested modifications * temp commit of requested modifications 2 * updated config file, resolved codepaths and refactored conversion script * updated decodelayer block types and refactored conversion script * style and quality update * small modifications based on the request * attentions are refactored * removed loss functions from modeling file, added loss function to lossutils, tried to move the MLP layer generation to config but it failed * deleted imageprocessor * fixed conversion script + quality and style * fixed config_att * [run_slow] dab_detr * changing model path in conversion file and in test file * fix Decoder variable naming * testing the old loss function * switched back to the new loss function and testing with the odl attention functions * switched back to the new last good result modeling file * moved back to the version when I asked the review * missing new line at the end of the file * old version test * turn back to newest mdoel versino but change image processor * style fix * style fix after merge main * [run_slow] dab_detr * [run_slow] dab_detr * added device and type for head bias data part * [run_slow] dab_detr * fixed model head bias data fill * changed test_inference_object_detection_head assertTrues to torch test assert_close * fixes part 1 * quality update * self.bbox_embed in decoder has been restored * changed Assert true torch closeall methods to torch testing assertclose * modelcard markdown file has been updated * deleted intemediate list from decoder module --------- Co-authored-by:
Pavel Iakubovskii <qubvel@gmail.com>
-
Yih-Dar authored
* update * update * update * dev-ci * more changes * fix * fix * fix --------- Co-authored-by:
ydshieh <ydshieh@users.noreply.github.com>
-
Yih-Dar authored
update docker files Co-authored-by:
ydshieh <ydshieh@users.noreply.github.com>
-
Luc Georges authored
-
Yih-Dar authored
fix Co-authored-by:
ydshieh <ydshieh@users.noreply.github.com>
-
Marc Sun authored
* add supports_quant_method check * fix * add test and fix suggestions * change logic slightly --------- Co-authored-by:
Mohamed Mekkouri <93391238+MekkCyber@users.noreply.github.com>
-
Yih-Dar authored
* quantization CI on PRs * fix * fix * add 2 members --------- Co-authored-by:
ydshieh <ydshieh@users.noreply.github.com>
-
pglorio authored
* First commit * Finish model implementation * First commit * Finish model implementation * Register zamba2 * generated modeling and configuration * generated modeling and configuration * added hybrid cache * fix attention_mask in mamba * dropped unused loras * fix flash2 * config docstrings * fix config and fwd pass * make fixup fixes * text_modeling_zamba2 * small fixes * make fixup fixes * Fix modular model converter * added inheritances in modular, renamed zamba cache * modular rebase * new modular conversion * fix generated modeling file * fixed import for Zamba2RMSNormGated * modular file cleanup * make fixup and model tests * dropped inheritance for Zamba2PreTrainedModel * make fixup and unit tests * Add inheritance of rope from GemmaRotaryEmbedding * moved rope to model init * drop del self.self_attn and del self.feed_forward * fix tests * renamed lora -> adapter * rewrote adapter implementation * fixed tests * Fix torch_forward in mamba2 layer * Fix torch_forward in mamba2 layer * Fix torch_forward in mamba2 layer * Dropped adapter in-place sum * removed rope from attention init * updated rope * created get_layers method * make fixup fix * make fixup fixes * make fixup fixes * update to new attention standard * update to new attention standard * make fixup fixes * minor fixes * cache_position * removed cache_position postion_ids use_cache * remove config from modular * removed config from modular (2) * import apply_rotary_pos_emb from llama * fixed rope_kwargs * Instantiate cache in Zamba2Model * fix cache * fix @slow decorator * small fix in modular file * Update docs/source/en/model_doc/zamba2.md Co-authored-by:
Arthur <48595927+ArthurZucker@users.noreply.github.com> * several minor fixes * inherit mamba2decoder fwd and drop position_ids in mamba * removed docstrings from modular * reinstate zamba2 attention decoder fwd * use regex for tied keys * Revert "use regex for tied keys" This reverts commit 9007a522b1f831df6d516a281c0d3fdd20a118f5. * use regex for tied keys * add cpu to slow forward tests * dropped config.use_shared_mlp_adapter * Update docs/source/en/model_doc/zamba2.md Co-authored-by:
Arthur <48595927+ArthurZucker@users.noreply.github.com> * re-convert from modular * extended Zamba2RMSNormGated to n_groups>1 * removed einops import * set _supports_sdpa = True * add use_mem_eff_path flag for fused mamba2 fwd * added docstring for use_mem_eff_ath flag --------- Co-authored-by:
root <root@node-2.us-southcentral1-a.compute.internal> Co-authored-by:
Arthur <48595927+ArthurZucker@users.noreply.github.com>
-
Sumit Vij authored
* Fix device mismatch error in whisper feature extraction * Set default device * Address code review feedback --------- Co-authored-by:
eustlb <94853470+eustlb@users.noreply.github.com>
-
Cyril Vallez authored
* start a nice modular * Update modular_gpt_neox.py * Update modular_gpt_neox.py * Update modular_gpt_neox.py * Update modular_gpt_neox.py * update * Update modular_gpt_neox.py * convert * fix attribute * fix attrs * oups * fix * fix * fix * fix * fix * fix order to pass test (see with accelerate team) * trigger CIs * modular * update * up * Update test_modeling_gpt_neox.py * Update test_modeling_gpt_neox.py * trigger CIs * correctly pass arg * simplify * remove key warning * update tp -> it's compatible since the view is before * trigger CIs
-
Cyril Vallez authored
* Update convert_mistral_weights_to_hf.py * Update convert_mistral_weights_to_hf.py * update * style * move it to integrations * style * trigger CIs * trigger CIs
-
Ryoo Kwangrok authored
* layernorm_decay_fix * W293 fix * ruff format fix * black format * ruff format * erase last layer * add test_get_parameter_names_rmsnorm * rmsnorm fix
-
Dmitry Tarasov authored
apply_chat_template: consistent behaviour for return_assistant_tokens_mask=True return_tensors=True (#35582) * apply_chat_template: consistent return_tensors behaviour with return_assistant_tokens_mask flag * test_chat_template_return_assistant_tokens_mask: support tokenizers with no attention mask * test_chat_template_return_assistant_tokens_mask: skip tokenizers with no padding token * test_chat_template_return_assistant_tokens_mask: force tokenizer padding_side=right --------- Co-authored-by:
Eduard Allakhverdov <goncharova@airi.net> Co-authored-by:
d.tarasov <d.tarasov@airi.net>
-
Pavel Iakubovskii authored
Updates type().is_cuda() -> .is_cuda(); .data<> -> .data_ptr<>
-
Raushan Turganbay authored
* fix rope delats calculation * add test * style
-
- 03 Feb, 2025 3 commits
-
-
Alex Brooks authored
* Update granite vision model path Signed-off-by:
Alex-Brooks <Alex.brooks@ibm.com> * Enable granite vision test Signed-off-by:
Alex-Brooks <Alex.brooks@ibm.com> --------- Signed-off-by:
Alex-Brooks <Alex.brooks@ibm.com>
-
Gar authored
* refine all resize_token_embedding() * ruff format * hotfix
-
Arthur authored
* update test for now * up * cleanup * update todo
-
- 31 Jan, 2025 4 commits
-
-
Yih-Dar authored
use torch 2.6 for CI Co-authored-by:
ydshieh <ydshieh@users.noreply.github.com>
-
Yoni Gozlan authored
* init modular got_ocr2 * Get correct got_ocr architecture * add processing * run modular with processing * add working inference * apply modular * Refactor and fix style * Refactor, cleanup, fix style * fix init order * Fix docs * add base modeling tests * fix style and consistency * rename doc file * fix repo consistency * fix inference with box * add image processing and support for crop_to_multi_page * Fix batch inference * add tests * fixup * fix slow test * fix docstrings * Add model doc * update to new init * fix input autocast pixel_values dtype * update doc * move doc to multimodal * Reformat crop_image_to_patches and add docstrings * Fix example in forward docstring * Address Pablo review * [run slow] got_ocr2 * remove defaults defined twice * apply modular * add torch_device to integration tests * update modular * follow-up Pavel review * add device variable in doc * fix doc multi-page * Force eager attention for vision encoder to avoid attn implementation conflict * revert qwen2vl doc changes * use Qwen2ForCausalLM instead of Qwen2Model * make fixup * refactor gotocr2 to llava style * uniformize function names and reduce checks * final nits * fix pixel_values dtype error * change checkpoint names * fix modular
-
Joao Gante authored
moshi cant compile
-
eustlb authored
compute head_dim_padding at init
-
- 30 Jan, 2025 5 commits
-
-
Yoni Gozlan authored
* move make_flat_list_of_images and make_batched_videos to image_utils * remove unnecessary is_vision_available * move make_nested_list_of_images to image_utils * fix fast pixtral image processor * fix import mllama * fix make_nested_list_of_images * add tests * convert 4d arrays/tensors to list * add test_make_batched_videos * add support nested batch of videos * fix image processing qwen2vl
-
Marcel authored
* Handle empty change indices in RLE conversion for masks * [test] Add unit tests for RLE encoding of masks in SamProcessor * [test] Update RLE conversion tests to use TensorFlow implementation * [test] Fix formatting in SamProcessorTest according to check_code_quality action * [test] Fix formatting in SamProcessorTest according to check_code_quality * [test] Refactored rle test cases into one test and used tf tensors in tf test cases * [test] Fix: removed self parameter from refactored methods * [test] Removed nested methods in run-length encoding tests for PyTorch and TensorFlow * [test] Added description to individual to run-length encoding tests for PyTorch and TensorFlow.
-
Yih-Dar authored
fix Co-authored-by:
ydshieh <ydshieh@users.noreply.github.com>
-
Nat Jeffries authored
* Add support for attention masking in moonshine. Tested against Open ASR Leaderboard with batch size 256. * Update comments and ensure attention masks are passed everywhere. Perform attention mask downsampling inside of moonshine forward call. * Hide padding behind conditional. Fix encoder/decoder masking. - Correctly pipe encoder attention mask into decoder - Add correct scaling factor if one is not already provided. - Fix formatting with ruff * Add auto generated modeling_moonshine file. * Update formatting in generated model file. * Address review comments. * Fix typo. * Add `pad_head_dim_to_multiple_of` to moonshine config. * Correct args order for MooonshineConfig. * Update configuration moonshine too. * Update src/transformers/models/moonshine/modular_moonshine.py * Update src/transformers/models/moonshine/configuration_moonshine.py --------- Co-authored-by:
eustlb <94853470+eustlb@users.noreply.github.com>
-
Yih-Dar authored
* fix * remove is_flaky * fix --------- Co-authored-by:
ydshieh <ydshieh@users.noreply.github.com>
-